Skip to main content
Log in

Meixner Class of Non-Commutative Generalized Stochastic Processes with Freely Independent Values I. A Characterization

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let T be an underlying space with a non-atomic measure σ on it (e.g. \({T=\mathbb R^d}\) and σ is the Lebesgue measure). We introduce and study a class of non-commutative generalized stochastic processes, indexed by points of T, with freely independent values. Such a process (field), ω = ω(t), \({t\in T}\) , is given a rigorous meaning through smearing out with test functions on T, with \({\int_T \sigma(dt)f(t)\omega(t)}\) being a (bounded) linear operator in a full Fock space. We define a set CP of all continuous polynomials of ω, and then define a non-commutative L 2-space L 2(τ) by taking the closure of CP in the norm \({\|P\|_{L^2(\tau)}:=\|P\Omega\|}\) , where Ω is the vacuum in the Fock space. Through procedure of orthogonalization of polynomials, we construct a unitary isomorphism between L 2(τ) and a (Fock-space-type) Hilbert space \({\mathbb F=\mathbb R\oplus\bigoplus_{n=1}^\infty L^2(T^n,\gamma_n)}\) , with explicitly given measures γ n . We identify the Meixner class as those processes for which the procedure of orthogonalization leaves the set CP invariant. (Note that, in the general case, the projection of a continuous monomial of order n onto the n th chaos need not remain a continuous polynomial.) Each element of the Meixner class is characterized by two continuous functions λ and η ≥ 0 on T, such that, in the \({\mathbb F}\) space, ω has representation \({\omega(t)=\partial_t^\dagger+\lambda(t)\partial_t^\dagger\partial_t+\partial_t+\eta(t)\partial_t^\dagger\partial^2_t}\) , where \({\partial_t^\dagger}\) and ∂ t are the usual creation and annihilation operators at point t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi L., Franz U., Skeide M.: Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras. Commun. Math. Phys. 228, 123–150 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Anshelevich M.: Free martingale polynomials. J. Funct. Anal. 201, 228–261 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anshelevich M.: Appell polynomials and their relatives. Int. Math. Res. Not. 2004(65), 3469–3531 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anshelevich M.: q-Lévy processes. J. Reine Angew. Math. 576, 181–207 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Anshelevich M.: Free Meixner states. Commun. Math. Phys. 276, 863–899 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Anshelevich M.: Orthogonal polynomials with a resolvent-type generating function. Trans. Amer. Math. Soc. 360, 4125–4143 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Anshelevich M.: Monic non-commutative orthogonal polynomials. Proc. Amer. Math. Soc. 136, 2395–2405 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Barndorff-Nielsen O.E., Thorbjørnsen S.: Lévy laws in free probability. Proc. Natl. Acad. Sci. USA 99, 16568–16575 (2002) (electronic)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Barndorff-Nielsen O.E., Thorbjørnsen S.: Lévy processes in free probability. Proc. Natl. Acad. Sci. USA 99, 16576–16580 (2002) (electronic)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Barndorff-Nielsen O.E., Thorbjørnsen S.: The Lévy-Itô decomposition in free probability. Probab. Theory Related Fields 131(2), 197–228 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berezansky Ju.M.: Expansions in Eigenfunctions of Selfadjoint Operators. Providence, RI, Amer. Math. Soc. (1968)

    Google Scholar 

  12. Berezansky Yu.M.: Commutative Jacobi fields in Fock space. Integral Equations Operator Theory 30, 163–190 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Berezansky Yu.M., Lytvynov E., Mierzejewski D.A.: The Jacobi field of a Lévy process. Ukrainian Math. J. 55, 853–858 (2003)

    Article  MathSciNet  Google Scholar 

  14. Berezansky Yu.M., Mierzejewski D.A.: The structure of the extended symmetric Fock space. Methods Funct. Anal. Topology 6(4), 1–13 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Biane P.: Processes with free increments. Math. Z. 227, 143–174 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bozejko M., Kümmerer B., Speicher R.: q-Gaussian processes: non-commutative and classical aspects. Commun. Math. Phys. 185, 129–154 (1997)

    Article  MATH  ADS  Google Scholar 

  17. Bozejko M., Bryc W.: On a class of free Lévy laws related to a regression problem. J. Funct. Anal. 236, 59–77 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Brüning E.: When is a field a Jacobi field? A characterization of states on tensor algebras. Publ. Res. Inst. Math. Sci. 22, 209–246 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Donati-Martin C.: Stochastic integration with respect to q Brownian motion. Probab. Theory Related Fields 125, 77–95 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Effros E.G., Popa M.: Feynman diagrams and Wick products associated with q-Fock space. Proc. Natl. Acad. Sci. USA 100, 8629–8633 (2003) (electronic)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Gel’fand I.M., Vilenkin N.Ya.: Generalized Functions, Vol. IV. Academic Press, New York-London (1964)

    Google Scholar 

  22. Hida T., Kuo H.-H., Potthoff J., Streit L.: White Noise: An Infinite Dimensional Calculus. Kluwer Acad. Publ., Dordrecht-Boston-London (1993)

    MATH  Google Scholar 

  23. Kondratiev Yu.G., Lytvynov E.W.: Operators of gamma white noise calculus. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3, 303–335 (2000)

    MATH  MathSciNet  Google Scholar 

  24. Kondratiev Yu.G., da Silva J.L., Streit L., Us G.F.: Analysis on Poisson and gamma spaces. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1, 91–117 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lytvynov E.W.: Multiple Wiener integrals and non-Gaussian white noises: a Jacobi field approach. Meth. Func. Anal. and Topol 1, 61–85 (1995)

    MATH  MathSciNet  Google Scholar 

  26. Lytvynov E.: Polynomials of Meixner’s type in infinite dimensions—Jacobi fields and orthogonality measures. J. Funct. Anal. 200, 118–149 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lytvynov E.: Orthogonal decompositions for Lévy processes with an application to the gamma, Pascal, and Meixner processes. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6, 73–102 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lytvynov E.: The square of white noise as a Jacobi field. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7, 619–629 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lytvynov E.W., Rebenko A.L., Shchepan’uk G.V.: Wick theorems in non-Gaussian white noise calculus. Rep. Math. Phys. 37, 217–232 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Meixner J.: Orthogonale Polynomsysteme mit einem besonderen Gestalt der erzeugenden Funktion. J. London Math. Soc. 9, 6–13 (1934)

    Article  MATH  Google Scholar 

  31. Nualart D., Schoutens W.: Chaotic and predictable representations for Lévy processes. Stochastic Process. Appl. 90, 109–122 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Parthasarathy K.R.: An Introduction to Quantum Stochastic Calculus. Birkhäuser Verlag, Basel (1992)

    MATH  Google Scholar 

  33. Rodionova I.: Analysis connected with generating functions of exponential type in one and infinite dimensions. Methods Funct. Anal. Topology 11, 275–297 (2005)

    MATH  MathSciNet  Google Scholar 

  34. Saitoh N., Yoshida H.: The infinite divisibility and orthogonal polynomials with a constant recursion formula in free probability theory. Probab. Math. Statist. 21, 159–170 (2001)

    MATH  MathSciNet  Google Scholar 

  35. Schoutens W.: Stochastic Processes and Orthogonal Polynomials. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  36. Śniady P.: Quadratic bosonic and free white noises. Commun. Math. Phys. 211, 615–628 (2000)

    Article  MATH  ADS  Google Scholar 

  37. Speicher, R.: Free probability theory and non-crossing partitions. Sém. Lothar. Combin. 39, Art. B39c, 38 pp. (1997) (electronic)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Lytvynov.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bożejko, M., Lytvynov, E. Meixner Class of Non-Commutative Generalized Stochastic Processes with Freely Independent Values I. A Characterization. Commun. Math. Phys. 292, 99–129 (2009). https://doi.org/10.1007/s00220-009-0837-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0837-x

Keywords

Navigation