Skip to main content
Log in

Proof of the Julia–Zee Theorem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is a well accepted principle that finite-energy static solutions in the classical relativistic gauge field theory over the (2 + 1)-dimensional Minkowski spacetime must be electrically neutral. We call such a statement the Julia–Zee theorem. In this paper, we present a mathematical proof of this fundamental structural property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, R.M., Guo, Y., Spirn, D., Yang, Y.: Electrically and magnetically charged vortices in the Chern–Simons–Higgs theory (2009, preprint)

  2. Chern S.S., Simons J.: Some cohomology classes in principal fiber bundles and their application to Riemannian geometry. Proc. Nat. Acad. Sci. USA 68, 791–794 (1971)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Chern S.S., Simons J.: Characteristic forms and geometric invariants. Ann. Math. 99, 48–69 (1974)

    Article  MathSciNet  Google Scholar 

  4. Dunne, G.: Self-Dual Chern–Simons Theories. Lecture Notes in Physics, Vol. 36, Berlin: Springer, 1995

  5. Fröhlich J., Marchetti P.A.: Quantum field theories of vortices and anyons. Commun. Math. Phys. 121, 177–223 (1989)

    Article  MATH  ADS  Google Scholar 

  6. Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. In: Collected Papers of L. D. Landau (edited by D. Ter Haar), New York: Pergamon, 1965, pp. 546–568

  7. Hong J., Kim Y., Pac P.-Y.: Multivortex solutions of the Abelian Chern–Simons–Higgs theory. Phys. Rev. Lett. 64, 2330–2333 (1990)

    ADS  MathSciNet  Google Scholar 

  8. Jackiw R., Weinberg E.J.: Self-dual Chern–Simons vortices. Phys. Rev. Lett. 64, 2334–2337 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  9. Jaffe A., Taubes C.H.: Vortices and Monopoles. Birkhäuser, Boston (1980)

    MATH  Google Scholar 

  10. Julia B., Zee A.: Poles with both magnetic and electric charges in non-Abelian gauge theory. Phys. Rev. D 11, 2227–2232 (1975)

    Article  ADS  Google Scholar 

  11. Kumar C.N., Khare A.: Charged vortex of finite energy in nonabelian gauge theories with Chern–Simons term. Phys. Lett. B 178, 395–399 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  12. Nielsen H.B., Olesen P.: Vortex-line models for dual strings. Nucl. Phys. B 61, 45–61 (1973)

    Article  ADS  Google Scholar 

  13. Paul S., Khare A.: Charged vortices in an Abelian Higgs model with Chern–Simons term. Phys. Lett. B 17, 420–422 (1986)

    ADS  MathSciNet  Google Scholar 

  14. Prasad M.K., Sommerfield C.M.: Exact classical solutions for the ’t Hooft monopole and the Julia–Zee dyon. Phys. Rev. Lett. 35, 760–762 (1975)

    Article  ADS  Google Scholar 

  15. Ryder L.H.: Quantum Field Theory. 2nd ed. Cambridge U. Press, Cambridge (1996)

    MATH  Google Scholar 

  16. Schechter M., Weder R.: A theorem on the existence of dyon solutions. Ann. Phys. 132, 293–327 (1981)

    ADS  MathSciNet  Google Scholar 

  17. Schwinger J.: A magnetic model of matter. Science 165, 757–761 (1969)

    Article  ADS  Google Scholar 

  18. Tchrakian D.H.: The ’t Hooft electromagnetic tensor for Higgs fields of arbitrary isospin. Phys. Lett. B 91, 415–416 (1980)

    Article  ADS  Google Scholar 

  19. ’t Hooft G.: Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276–284 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  20. de Vega H.J., Schaposnik F.: Electrically charged vortices in non-Abelian gauge theories with Chern–Simons term. Phys. Rev. Lett. 56, 2564–2566 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  21. de Vega H.J., Schaposnik H.J.: Vortices and electrically charged vortices in non-Abelian gauge theories. Phys. Rev. D 34, 3206–3213 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  22. Wilczek F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wilczek F.: Fractional Statistics and Anyon Superconductors. World Scientific, Singapore (1990)

    Google Scholar 

  24. Zwanziger D.: Quantum field theory of particles with both electric and magnetic charges. Phys. Rev. 176, 1489–1495 (1968)

    Article  ADS  Google Scholar 

  25. Zwanziger D.: Local-Lagrangian quantum field theory of electric and magnetic charges. Phys. Rev. D 3, 880–891 (1971)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Spruck.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spruck, J., Yang, Y. Proof of the Julia–Zee Theorem. Commun. Math. Phys. 291, 347–356 (2009). https://doi.org/10.1007/s00220-009-0791-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0791-7

Keywords

Navigation