Skip to main content
Log in

Mellin Transform of the Limit Lognormal Distribution

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The technique of intermittency expansions is applied to derive an exact formal power series representation for the Mellin transform of the probability distribution of the limit lognormal multifractal process. The negative integral moments are computed by a novel product formula of Selberg type. The power series is summed in general by means of its small intermittency asymptotic. The resulting integral formula for the Mellin transform is conjectured to be valid at all levels of intermittency. The conjecture is verified partially by proving that the integral formula reproduces known results for the positive and negative integral moments of the limit lognormal distribution and gives a valid characteristic function of the Lévy-Khinchine type for the logarithm of the distribution. The moment problem for the logarithm of the distribution is shown to be determinate, whereas the moment problems for the distribution and its reciprocal are shown to be indeterminate. The conjecture is used to represent the Mellin transform as an infinite product of gamma factors generalizing Selberg’s finite product. The conjectured probability density functions of the limit lognormal distribution and its logarithm are computed numerically by the inverse Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews G.E., Askey R., Roy R.: Special Functions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Antonov S.N.: Asymptotic behavior of infinitely divisible laws. Mathematical Notes 28, 924–929 (1980)

    MathSciNet  Google Scholar 

  3. Bacry E., Delour J., Muzy J.-F.: Multifractal random walk. Phys. Rev. E 64, 026103 (2001)

    Article  ADS  Google Scholar 

  4. Bacry E., Delour J., Muzy J.-F.: Modelling financial time series using multifractal random walks. Physica A 299, 84–92 (2001)

    Article  MATH  ADS  Google Scholar 

  5. Bacry E., Muzy J.-F.: Log-infinitely divisible multifractal random walks. Commun. Math. Phys 236, 449–475 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Barral J., Mandelbrot B.B.: Multifractal products of cylindrical pulses. Prob. Theory Relat. Fields 124, 409–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bisgaard T.M., Sasvari Z.: Characteristic Functions and Moment Sequences. Nova Science Publishers, Huntington (2000)

    MATH  Google Scholar 

  8. Brendt B.C.: Ramanujan’s Notebooks Part V. Springer-Verlag, New York (1998)

    Google Scholar 

  9. Charalambides C.A.: Enumerative Combinatorics. Chapman & Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  10. Forrester P.J., Warnaar S.O.: The importance of the Selberg integral. Bull. Amer. Math. Soc. 45, 489–534 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hardy G.H.: Divergent Series. Clarendon Press, Oxford (1949)

    MATH  Google Scholar 

  12. Kahane J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Quebec 9, 105–150 (1985)

    MATH  MathSciNet  Google Scholar 

  13. Kahane J.-P.: Positive martingales and random measures. Chi. Ann. Math. 8, 1–12 (1987)

    MATH  MathSciNet  Google Scholar 

  14. Kahane J.-P.: Produits de poids aléatoires indépendants et applications. In: Belair, J., Dubuc, S.(eds) Fractal Geometry and Analysis., pp. 277. Kluwer, Boston (1991)

    Google Scholar 

  15. Khorunzhiy O.: Limit theorems for sums of products of random variables. Markov Process. Relat. Fields 9, 675–686 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Knopp K.: Theory and Application of Infinite Series. Dover, New York (1990)

    Google Scholar 

  17. Mandelbrot, B.B.: Possible refinement of the log-normal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: Statistical Models and Turbulence, Rosenblatt, M., Van Atta, C. eds., Lecture Notes in Physics 12, New York: Springer, 1972, p. 333

  18. Mandelbrot B.B.: Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331–358 (1974)

    Article  MATH  ADS  Google Scholar 

  19. Mandelbrot, B.B.: Limit lognormal multifractal measures. In: Frontiers of Physics: Landau Memorial Conference Gotsman, E.A. et al, eds., New York: Pergamon, 1990, p. 309

  20. Muzy J.-F., Bacry E.: Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws. Phys. Rev. E 66, 056121 (2002)

    Article  ADS  Google Scholar 

  21. Olver F.W.J.: Asymptotics and Special Functions. Academic Press, San Diego (1974)

    Google Scholar 

  22. Ostrovsky D.: Limit lognormal multifractal as an exponential functional. J. Stat. Phys. 116, 1491–1520 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Ostrovsky D.: Functional Feynman-Kac equations for limit lognormal multifractals. J. Stat. Phys. 127, 935–965 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Ostrovsky D.: Intermittency expansions for limit lognormal multifractals. Lett. Math. Phys. 83, 265–280 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Schmitt F.: A causal multifractal stochastic equation and its statistical properties. Eur. J. Phys. B 34, 85–98 (2003)

    Article  ADS  Google Scholar 

  26. Selberg A.: Remarks on a multiple integral. Norske Mat. Tidsskr. 26, 71–78 (1944)

    MATH  MathSciNet  Google Scholar 

  27. Srivastava H.M., Choi J.: Series Associated with the Zeta and Related Functions. Kluwer, Dordrecht (2001)

    MATH  Google Scholar 

  28. Steutel F.W., van Harn K.: Infinite Divisibility of Probability Distributions on the Real Line. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  29. Stoyanov J.: Krein condition in probabilistic moment problems. Bernoulli 6, 939–949 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Temme N.M.: Special Functions: an Introduction to the Classical Functions of Mathematical Physics. John Wiley, New York (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Ostrovsky.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrovsky, D. Mellin Transform of the Limit Lognormal Distribution. Commun. Math. Phys. 288, 287–310 (2009). https://doi.org/10.1007/s00220-009-0771-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0771-y

Keywords

Navigation