Abstract
In the mean-field limit the dynamics of a quantum Bose gas is described by a Hartree equation. We present a simple method for proving the convergence of the microscopic quantum dynamics to the Hartree dynamics when the number of particles becomes large and the strength of the two-body potential tends to 0 like the inverse of the particle number. Our method is applicable for a class of singular interaction potentials including the Coulomb potential. We prove and state our main result for the Heisenberg- picture dynamics of “observables”, thus avoiding the use of coherent states. Our formulation shows that the mean-field limit is a “semi-classical” limit.
Similar content being viewed by others
References
Bergh J., Löfström J.: Interpolation Spaces, an Introduction. Springer, Berlin-Heidelberg-New York (1976)
Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics 2. Springer, Berlin- Heidelberg-New York (2002)
Brown W., Hepp K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56, 101–113 (1977)
Chadam J.M., Glassey R.T.: Global existence of solutions to the Cauchy problem for time-dependent Hartree equations. J. Math. Phys. 16, 1122 (1975)
Egorov Y.V.: The canonical transformations of pseudodifferential operators. Usp. Mat. Nauk 25, 235–236 (1969)
Erdős L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation with Coulomb potential. Adv. Theor. Math. Phys. 5, 1169–1205 (2001)
Fröhlich J., Graffi S., Schwarz S.: Mean-field and classical limit of many-body Schrödinger dynamics for bosons. Commun. Math. Phys. 271, 681–697 (2007)
Fröhlich J., Knowles A., Pizzo A.: Atomism and Quantization. J. Phys. A 40, 3033–3045 (2007)
Ginibre, J., Velo, G.: The classical field limit of scattering theory for non-relativistic many-boson systems. I-II. Commun. Math. Phys. 66, 37–76 (1979); Commun. Math. Phys. 68, 45–68 (1979)
Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)
Keel M., Tao T.: Endpoint Strichartz estimates. Amer. J. Math. 120, 955–980 (1998)
Knuth D.E.: The Art of Computer Programming, Vol. 1. Addison-Wesley, Reading, MA (1998)
Lieb, E.H., Loss, M.: Analysis. Providence, RI: Amer. Math. Soc., 2001
Lieb E.H., Seiringer R.: Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88(17), 170409 (2002)
Narnhofer H., Sewell G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79, 9–24 (1981)
Neunzert, H.: Fluid Dyn. Trans. 9, 229 (1977); Neunzert, H.: Neuere qualitative und numerische Methoden in der Plasmaphysik. Paderborn: Vorlesungsmanuskript, 1975
O’Neil R.: Convolution operators and L(p, q) spaces. Duke Math. J. 30, 129–142 (1963)
Reed M., Simon B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1980)
Reed M., Simon B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)
Reed M., , : Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York (1978)
Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. http://arXiv.org/abs/0711.3087v1[math-ph], 2007
Schlein, B., Erdős, L.: Quantum Dynamics with Mean Field Interactions: a New Approach. http://arXiv.org/abs/0804.3774v1 (2008)
Simon B.: Best constants in some operator smoothness estimates. J. Func. Anal. 107, 66–71 (1992)
Zagatti S.: The Cauchy problem for Hartree-Fock time-dependent equations. Ann. Inst. Henri Poincaré (A) 56, 357–374 (1992)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H.-T. Yau
Rights and permissions
About this article
Cite this article
Fröhlich, J., Knowles, A. & Schwarz, S. On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction. Commun. Math. Phys. 288, 1023–1059 (2009). https://doi.org/10.1007/s00220-009-0754-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-009-0754-z