Skip to main content
Log in

On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the mean-field limit the dynamics of a quantum Bose gas is described by a Hartree equation. We present a simple method for proving the convergence of the microscopic quantum dynamics to the Hartree dynamics when the number of particles becomes large and the strength of the two-body potential tends to 0 like the inverse of the particle number. Our method is applicable for a class of singular interaction potentials including the Coulomb potential. We prove and state our main result for the Heisenberg- picture dynamics of “observables”, thus avoiding the use of coherent states. Our formulation shows that the mean-field limit is a “semi-classical” limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergh J., Löfström J.: Interpolation Spaces, an Introduction. Springer, Berlin-Heidelberg-New York (1976)

    MATH  Google Scholar 

  2. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics 2. Springer, Berlin- Heidelberg-New York (2002)

    Google Scholar 

  3. Brown W., Hepp K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56, 101–113 (1977)

    Article  ADS  Google Scholar 

  4. Chadam J.M., Glassey R.T.: Global existence of solutions to the Cauchy problem for time-dependent Hartree equations. J. Math. Phys. 16, 1122 (1975)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Egorov Y.V.: The canonical transformations of pseudodifferential operators. Usp. Mat. Nauk 25, 235–236 (1969)

    Google Scholar 

  6. Erdős L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation with Coulomb potential. Adv. Theor. Math. Phys. 5, 1169–1205 (2001)

    MathSciNet  Google Scholar 

  7. Fröhlich J., Graffi S., Schwarz S.: Mean-field and classical limit of many-body Schrödinger dynamics for bosons. Commun. Math. Phys. 271, 681–697 (2007)

    Article  MATH  ADS  Google Scholar 

  8. Fröhlich J., Knowles A., Pizzo A.: Atomism and Quantization. J. Phys. A 40, 3033–3045 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Ginibre, J., Velo, G.: The classical field limit of scattering theory for non-relativistic many-boson systems. I-II. Commun. Math. Phys. 66, 37–76 (1979); Commun. Math. Phys. 68, 45–68 (1979)

  10. Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  11. Keel M., Tao T.: Endpoint Strichartz estimates. Amer. J. Math. 120, 955–980 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Knuth D.E.: The Art of Computer Programming, Vol. 1. Addison-Wesley, Reading, MA (1998)

    Google Scholar 

  13. Lieb, E.H., Loss, M.: Analysis. Providence, RI: Amer. Math. Soc., 2001

  14. Lieb E.H., Seiringer R.: Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88(17), 170409 (2002)

    Article  ADS  Google Scholar 

  15. Narnhofer H., Sewell G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79, 9–24 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  16. Neunzert, H.: Fluid Dyn. Trans. 9, 229 (1977); Neunzert, H.: Neuere qualitative und numerische Methoden in der Plasmaphysik. Paderborn: Vorlesungsmanuskript, 1975

  17. O’Neil R.: Convolution operators and L(p, q) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  18. Reed M., Simon B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1980)

    MATH  Google Scholar 

  19. Reed M., Simon B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  20. Reed M., , : Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  21. Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. http://arXiv.org/abs/0711.3087v1[math-ph], 2007

  22. Schlein, B., Erdős, L.: Quantum Dynamics with Mean Field Interactions: a New Approach. http://arXiv.org/abs/0804.3774v1 (2008)

  23. Simon B.: Best constants in some operator smoothness estimates. J. Func. Anal. 107, 66–71 (1992)

    Article  MATH  Google Scholar 

  24. Zagatti S.: The Cauchy problem for Hartree-Fock time-dependent equations. Ann. Inst. Henri Poincaré (A) 56, 357–374 (1992)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Knowles.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröhlich, J., Knowles, A. & Schwarz, S. On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction. Commun. Math. Phys. 288, 1023–1059 (2009). https://doi.org/10.1007/s00220-009-0754-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0754-z

Keywords

Navigation