Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Communications in Mathematical Physics
  3. Article

On the Reeh-Schlieder Property in Curved Spacetime

  • Open access
  • Published: 26 February 2009
  • volume 288, pages 271–285 (2009)
Download PDF

You have full access to this open access article

Communications in Mathematical Physics Aims and scope Submit manuscript
On the Reeh-Schlieder Property in Curved Spacetime
Download PDF
  • Ko Sanders1 
  • 535 Accesses

  • 25 Citations

  • Explore all metrics

Cite this article

Abstract

We attempt to prove the existence of Reeh-Schlieder states on curved spacetimes in the framework of locally covariant quantum field theory using the idea of spacetime deformation and assuming the existence of a Reeh-Schlieder state on a diffeomorphic (but not isometric) spacetime. We find that physically interesting states with a weak form of the Reeh-Schlieder property always exist and indicate their usefulness. Algebraic states satisfying the full Reeh-Schlieder property also exist, but are not guaranteed to be of physical interest.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization. EMS Publishing House, Zürich, 2007

  2. Baumgärtel H., Wollenberg M.: Causal nets of operator algebras. Akademie Verlag, Berlin (1992)

    MATH  Google Scholar 

  3. Bernal A.N., Sánchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)

    Article  MATH  ADS  Google Scholar 

  4. Bernal A.N., Sánchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  6. Brunetti R., Ruzzi G.: Superselection sectors and general covariance. I. Commun. Math. Phys. 270, 69–108 (2007)

    MATH  ADS  MathSciNet  Google Scholar 

  7. Dimock J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219–228 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Dixmier J., Maréchal O.: Vecteurs totalisateurs d’une algèbre de von Neumann. Commun. Math. Phys. 22, 44–50 (1971)

    Article  MATH  ADS  Google Scholar 

  9. Fulling S.A., Narcowich F.J., Wald R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime, II. Ann. Phys. (N.Y.) 136, 243–272 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  10. Haag, R.: Local quantum physics – fields, particles, algebras. Berlin-Heidelberg:Springer Verlag, 1992

  11. Hawking S.W., Ellis G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  12. Kadison R.V., Ringrose J.R.: Fundamentals of the theory of operator algebras. Academic Press, London (1983)

    MATH  Google Scholar 

  13. Kay B.S.: Linear spin-zero quantum fields in external gravitational and scalar fields. I. A one particle structure for the stationary case. Commun. Math. Phys. 62, 55–70 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  14. O’Neill B.: Semi-Riemannian geometry: with applications to relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  15. Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Redhead, M.: The vacuum state in relativistic quantum field theory. In: Hull, D., Forbes, M., Burian, eds., Phil. of Sci. Assoc, 1994 PSA, Vol. 1994, Volume 2 E.Lansing, MI:Phil. of Sci. Assoc, 1994, pp. 77–87

  17. Reeh H., Schlieder S.: Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Felden. Nuovo Cimento 22, 1051–1068 (1961)

    Article  MathSciNet  Google Scholar 

  18. Sanders, K.: Aspects of locally covariant quantum field theory. PhD thesis, University of York, also available on http://arxiv.org/abs/:0809.4828v1[math-ph], 2008

  19. Strohmaier A.: The Reeh-Schlieder property for quantum fields on stationary spacetimes. Commun. Math. Phys. 215, 105–118 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved space-times: analytic wavefront sets and Reeh-Schlieder theorems. J. Math. Phys. 43, 5514–5530 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Verch R.: Antilocality and a Reeh-Schlieder theorem on manifolds. Lett. Math. Phys. 28, 143–154 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Verch R.: Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields on curved spacetime. Rev. Math. Phys. 9, 635–674 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Verch R.: A spin-statistics theorem for quantum fields on curved spacetime manifolds in a generally covariant framework. Commun. Math. Phys. 223, 261–288 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Wald R.M.: General relativity. The University of Chicago Press, Chicago and London (1984)

    MATH  Google Scholar 

Download references

Acknowledgement

I would like to thank Chris Fewster for suggesting the current approach to the Reeh-Schlieder property and for many helpful discussions and comments on the second draft. Many thanks also to Lutz Osterbrink for his careful proofreading of the first draft. Finally I would like to express my gratitude to the anonymous referee for pointing out some minor mistakes and providing useful comments.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Mathematics, University of York, Heslington, York, YO10 5DD, United Kingdom

    Ko Sanders

Authors
  1. Ko Sanders
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ko Sanders.

Additional information

Communicated by G. W. Gibbons

Dedicated to Klaas Landsman, out of gratitude for the support he offered when it was most needed

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Sanders, K. On the Reeh-Schlieder Property in Curved Spacetime. Commun. Math. Phys. 288, 271–285 (2009). https://doi.org/10.1007/s00220-009-0734-3

Download citation

  • Received: 26 February 2008

  • Accepted: 27 November 2008

  • Published: 26 February 2009

  • Issue Date: May 2009

  • DOI: https://doi.org/10.1007/s00220-009-0734-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Curve Spacetime
  • Cauchy Surface
  • Local Algebra
  • Free Scalar
  • Covariant Quantum
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature