Skip to main content

Analytic Structure of Many-Body Coulombic Wave Functions

Abstract

We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic many-particle systems. We prove the following: Let ψ(x) with \({{\bf x} = (x_{1},\dots, x_{N})\in \mathbb {R}^{3N}}\) denote an N-electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coalescence point, for which x 1 = 0 and the other electron coordinates do not coincide, and differ from 0, ψ can be represented locally as ψ(x) = ψ (1)(x) + |x 1|ψ (2)(x) with ψ (1), ψ (2) real analytic. A similar representation holds near two-electron coalescence points. The Kustaanheimo-Stiefel transform and analytic hypoellipticity play an essential role in the proof.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Castella F., Jecko T., Knauf A.: Semiclassical Resolvent Estimates for Schrödinger Operators with Coulomb Singularities. Ann. Henri Poincaré 9(4), 775–815 (2008)

    MATH  Article  MathSciNet  Google Scholar 

  2. 2

    Flad H.-J., Hackbusch W., Schneider R.: Best N-term approximation in electronic structure calculations. I. One-electron reduced density matrix. Math. Model. Numer. Anal. 40(1), 49–61 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  3. 3

    Flad H.-J., Hackbusch W., Schneider R.: Best N-term approximation in electronic structure calculations. II. Jastrow factors. Math. Model. Numer. Anal. 41(2), 261–279 (2007)

    MATH  Article  MathSciNet  Google Scholar 

  4. 4

    Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: The Electron Density is Smooth Away from the Nuclei. Comm. Math. Phys. 228(3), 401–415 (2002)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  5. 5

    Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard Sørensen, T.: On the regularity of the density of electronic wavefunctions. In: Mathematical results in quantum mechanics (Taxco, 2001), Contemp. Math., vol. 307, Providence, RI: Amer. Math. Soc. (2002) pp. 143–148

  6. 6

    Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: Analyticity of the density of electronic wavefunctions. Ark. Mat. 42(1), 87–106 (2004)

    MATH  MathSciNet  Google Scholar 

  7. 7

    Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: Sharp Regularity Results for Coulombic Many-Electron Wave Functions. Commun. Math. Phys. 255(1), 183–227 (2005)

    MATH  Article  ADS  Google Scholar 

  8. 8

    Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: Non-Isotropic Cusp Conditions and Regularity of the Electron Density of Molecules at the Nuclei. Ann. Henri Poincaré 8(4), 731–748 (2007)

    MATH  Article  Google Scholar 

  9. 9

    Fournais S., Hoffmann-Ostenhof M., Østergaard Sørensen T.: Third Derivative of the One-Electron Density at the Nucleus. Ann. Henri Poincaré 9(7), 1387–1412 (2008)

    MATH  Article  Google Scholar 

  10. 10

    Gérard C., Knauf A.: Collisions for the Quantum Coulomb Hamiltonian. Comm. Math. Phys. 143(1), 17–26 (1991)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  11. 11

    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Berlin: Springer-Verlag, 2001 (reprint of the 1998 edition)

  12. 12

    Grušin, V.V.: A certain class of elliptic pseudodifferential operators that are degenerate on a submanifold. Mat. Sb. (N.S.) 84 (126), 163–195 (1971) English translation: Math. USSR-Sb. 13, 155–185 (1971)

  13. 13

    Helffer B., Knauf A., Siedentop H., Weikard R.: On the absence of a first order correction for the number of bound states of a Schrödinger operator with Coulomb singularity. Comm. Part. Differ. Eq. 17(3–4), 615–639 (1992)

    MATH  MathSciNet  Google Scholar 

  14. 14

    Helffer B., Siedentop H.: Regularization of atomic Schrödinger operators with magnetic field. Math. Z. 218(3), 427–437 (1995)

    MATH  Article  MathSciNet  Google Scholar 

  15. 15

    Helffer B., Siedentop H.: A generalization of the Kustaanheimo-Stiefel transform for two-centre systems. Bull. London Math. Soc. 28(1), 33–42 (1996)

    MATH  Article  MathSciNet  Google Scholar 

  16. 16

    Hill R.N.: On the analytic structure of the wave function for a hydrogen atom in an analytic potential. J. Math. Phys. 25(5), 1577–1583 (1984)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  17. 17

    Hopf H.: Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104(1), 637–665 (1931)

    Article  MathSciNet  Google Scholar 

  18. 18

    Hörmander, L.: Linear partial differential operators, Third revised printing. Die Grundlehren der mathematischen Wissenschaften, Band 116. Berlin: Springer-Verlag, 1976

  19. 19

    Jost, R.: Das H-Atom nach Kustaanheimo-Stiefel-Scheifele. Lecture notes by H. Tschudi of a course by R. Jost on theoretical physics for mathematicians, Winter Semester 1974/75, ETH-Zürich, 1975

  20. 20

    Kato T.: On the eigenfunctions of many-particle systems in quantum mechanics. Comm. Pure Appl. Math. 10, 151–177 (1957)

    MATH  Article  MathSciNet  Google Scholar 

  21. 21

    Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Berlin: Springer-Verlag, 1995 (reprint of the 1980 edition)

  22. 22

    Knauf A.: The n-centre problem of celestial mechanics for large energies. J. Eur. Math. Soc. 4(1), 1–114 (2008)

    Article  MathSciNet  Google Scholar 

  23. 23

    Krantz, S.G., Parks, H.R.: A primer of real analytic functions, second ed., Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Boston, MA: Birkhäuser Boston Inc., 2002

  24. 24

    Kustaanheimo, P.E.: Spinor regularization of the Kepler motion. Ann. Univ. Turku. Ser. A I No. 73, 7 (1964)

  25. 25

    Kustaanheimo P.E., Stiefel E.L.: Perturbation theory of Kepler motion based on spinor regularization. J. Reine Angew. Math. 218, 204–219 (1965)

    MATH  MathSciNet  Google Scholar 

  26. 26

    Le Bris, C., Lions, P.-L.: From atoms to crystals: a mathematical journey. Bull. Amer. Math. Soc. (N.S.) 42(3), 291–363 (2005) (electronic)

    Google Scholar 

  27. 27

    Müller, C.: Spherical harmonics. Lecture Notes in Mathematics, vol. 17. Berlin: Springer-Verlag, 1966

  28. 28

    Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier Analysis, Self-Adjointness. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1975

  29. 29

    Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Math. Series, No. 32. Princeton, N.J.: Princeton Univ. Press, 1971

  30. 30

    Stiefel, E.L., Scheifele, G.: Linear and regular celestial mechanics. Perturbed two-body motion, numerical methods, canonical theory. Die Grundlehren der mathematischen Wissenschaften, Band 174. New York: Springer-Verlag, 1971

  31. 31

    Yserentant H.: On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98(4), 731–759 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  32. 32

    Yserentant H.: Sparse grid spaces for the numerical solution of the electronic Schrödinger equation. Numer. Math. 101(2), 381–389 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  33. 33

    Yserentant H.: The hyperbolic cross space approximation of electronic wavefunctions. Numer. Math. 105(4), 659–690 (2007)

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Østergaard Sørensen.

Additional information

© 2008 by the authors. This article may be reproduced in its entirety for noncommercial purposes.

On leave from: CNRS and Laboratoire de Mathématiques d’Orsay, Univ Paris-Sud, F-91405 Orsay CEDEX, France

Communicated by B. Simon

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T. et al. Analytic Structure of Many-Body Coulombic Wave Functions. Commun. Math. Phys. 289, 291–310 (2009). https://doi.org/10.1007/s00220-008-0664-5

Download citation

Keywords

  • Homogeneous Polynomial
  • Real Analytic Function
  • Harmonic Polynomial
  • Electronic Wavefunctions
  • Convergent Power Series