Renormalisation-Induced Phase Transitions for Unimodal Maps


The thermodynamical formalism is studied for renormalisable maps of the interval and the natural potential −t log | Df |. Multiple and indeed infinitely many phase transitions at positive t can occur for some quadratic maps. All unimodal quadratic maps with positive topological entropy exhibit a phase transition in the negative spectrum.

This is a preview of subscription content, access via your institution.


  1. 1

    Bruin H., Keller G.: Equilibrium states for S-unimodal maps. Erg. The. Dyna. Syst. 18(4), 765–789 (1998)

    MATH  Article  MathSciNet  Google Scholar 

  2. 2

    Bruin, H., Todd, M.: Equilibrium states for interval maps: the potential − t log |df |. Preprint, 2007, available at

  3. 3

    de Melo, W., van Strien, S.: One-dimensional dynamics, Volume 25 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Berlin: Springer-Verlag, 1993

  4. 4

    Dobbs, N.: Measures with positive Lyapunov exponent and conformal measures in rational dynamics,[math.Ds], 2008

  5. 5

    Dobbs N.: Hyperbolic dimension for interval maps. Nonlinearity 19(12), 2877–2894 (2006)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  6. 6

    Ledrappier F.: Some properties of absolutely continuous invariant measures on an interval. Erg. The. Dyn. Syst. 1(1), 77–93 (1981)

    MATH  MathSciNet  Google Scholar 

  7. 7

    Makarov N., Smirnov S.: On “thermodynamics” of rational maps. I. Negative spectrum. Commun. Math. Phys. 211(3), 705–743 (2000)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  8. 8

    Makarov, N., Smirnov, S (2003) On thermodynamics of rational maps. II. Non-recurrent maps. J. London Math. Soc. (2), 67(2), 417–432

    MATH  Article  MathSciNet  Google Scholar 

  9. 9

    Mañé R.: Hyperbolicity, sinks and measure in one-dimensional dynamics. Commun. Math. Phys. 100(4), 495–524 (1985)

    MATH  Article  ADS  Google Scholar 

  10. 10

    Martens M.: Distortion results and invariant Cantor sets of unimodal maps. Erg. The. Dyn. Syst. 14(2), 331–349 (1994)

    MATH  MathSciNet  Google Scholar 

  11. 11

    Pesin, Y., Senti, S.: Thermodynamical formalism associated with inducing schemes for one-dimensional maps. Mosc. Math. J. 5(3), 669–678, 743–744 (2005)

    Google Scholar 

  12. 12

    Prellberg T., Slawny J.: Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions. J. Statist. Phys. 66(1–2), 503–514 (1992)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  13. 13

    Przytycki F.: Lyapunov characteristic exponents are nonnegative. Proc. Amer. Math. Soc. 119(1), 309–317 (1993)

    MATH  Article  MathSciNet  Google Scholar 

  14. 14

    Przytycki F., Rivera-Letelier J., Smirnov S.: Equality of pressures for rational functions. Erg. The. Dyn. Syst. 24(3), 891–914 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  15. 15

    Ruelle, D.: Thermodynamic formalism. second edition Cambridge Mathematical Library. Cambridge: Cambridge University Press, 2004

  16. 16

    Sarig O.: Continuous phase transitions for dynamical systems. Commun. Math. Phys. 267(3), 631–667 (2006)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  17. 17

    Sarig O.M.: On an example with a non-analytic topological pressure. C. R. Acad. Sci. Paris Sér. I Math. 330(4), 311–315 (2000)

    MATH  MathSciNet  Google Scholar 

  18. 18

    Sarig O.M.: Phase transitions for countable Markov shifts. Commun. Math. Phys. 217(3), 555–577 (2001)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  19. 19

    Sullivan, D.: Bounds, quadratic differentials, and renormalization conjectures. In: American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988). Providence, RI: Amer. Math. Soc., 1992, pp. 417–466

  20. 20

    Thunberg H.: Unfolding of chaotic unimodal maps and the parameter dependence of natural measures. Nonlinearity 14(2), 323–337 (2001)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  21. 21

    Tsujii M.: Positive Lyapunov exponents in families of one-dimensional dynamical systems. Invent. Math. 111(1), 113–137 (1993)

    MATH  Article  ADS  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Neil Dobbs.

Additional information

The author was supported by the EU training network “Conformal Structures and Dynamics”.

Communicated by G. Gallavotti

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dobbs, N. Renormalisation-Induced Phase Transitions for Unimodal Maps. Commun. Math. Phys. 286, 377–387 (2009).

Download citation


  • Lyapunov Exponent
  • Topological Entropy
  • Pressure Function
  • Periodic Attractor
  • Markov Shift