Skip to main content
Log in

Contact Spheres and Hyperkähler Geometry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A taut contact sphere on a 3-manifold is a linear 2-sphere of contact forms, all defining the same volume form. In the present paper we completely determine the moduli of taut contact spheres on compact left-quotients of SU(2) (the only closed manifolds admitting such structures). We also show that the moduli space of taut contact spheres embeds into the moduli space of taut contact circles.

This moduli problem leads to a new viewpoint on the Gibbons-Hawking ansatz in hyperkähler geometry. The classification of taut contact spheres on closed 3-manifolds includes the known classification of 3-Sasakian 3-manifolds, but the local Riemannian geometry of contact spheres is much richer. We construct two examples of taut contact spheres on open subsets of \({\mathbb{R}^3}\) with nontrivial local geometry; one from the Helmholtz equation on the 2-sphere, and one from the Gibbons-Hawking ansatz. We address the Bernstein problem whether such examples can give rise to complete metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F., Hitchin N.J., Singer I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London Ser. A 362, 425–461 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Bakas I., Sfetsos K.: Toda fields of SO(3) hyper-Kähler metrics and free field realizations. Int. J. Mod. Phys. A 12, 2585–2611 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bär C.: Real Killing spinors and holonomy. Commun. Math. Phys. 154, 509–521 (1993)

    Article  MATH  ADS  Google Scholar 

  4. Besse, A.: Einstein Manifolds, Ergeb. Math. Grenzgeb. (3). Berlin: Springer-Verlag, 1987

  5. Boyer C.P.: A note on hyper-Hermitian four-manifolds. Proc. Amer. Math. Soc. 102, 157–164 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boyer, C.P., Galicki, K.: 3-Sasakian manifolds. In: Surveys in Differential Geometry: Essays on Einstein Manifolds, Surv. Differ. Geom. VI. Boston: Int. Press, 1999, pp. 123–184

  7. Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford Math. Monogr. Oxford: Oxford University Press, 2008

  8. Calabi E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K Jörgens. Mich. Math. J. 5, 105–126 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  9. Calabi, E.: Examples of Bernstein problems for some nonlinear equations. In: Global Analysis (Berkeley, 1968), Proc. Sympos. Pure Math. 15. Providence RI: Amer. Math. Soc. 1970, pp. 223–230

  10. Calabi, E.: A construction of nonhomogeneous Einstein metrics. In: Differential Geometry (Stanford, 1973), Proc. Sympos. Pure Math. 27, Part 2. Providence RI: Amer. Math. Soc. 1975, pp. 17–24

  11. Chave T., Tod K.P., Valent G.: (4, 0) and (4, 4) sigma models with a tri-holomorphic Killing vector. Phys. Lett. B 383, 262–270 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. Evans, L.C.: Partial Differential Equations, Grad. Stud. Math. 19. Providence RI: Amer. Math. Soc. 1998

  13. Geiges H.: Symplectic couples on 4-manifolds. Duke Math. J. 85, 701–711 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Geiges H.: Normal contact structures on 3-manifolds. Tôhoku Math. J. 49, 415–422 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Geiges H., Gonzalo J.: Contact geometry and complex surfaces. Invent. Math. 121, 147–209 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Geiges H., Gonzalo J.: Contact circles on 3-manifolds. J. Differ. Geom. 46, 236–286 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Geiges H., Gonzalo J.: Moduli of contact circles. J. Reine Angew. Math. 551, 41–85 (2002)

    MATH  MathSciNet  Google Scholar 

  18. Gibbons G.W., Hawking S.W.: Gravitational multi-instantons. Phys. Lett. B 78, 430–432 (1978)

    Article  ADS  Google Scholar 

  19. Gibbons G.W., Rychenkova P.: Cones, tri-Sasakian structures and superconformal invariance. Phys. Lett. B 443, 138–142 (1998)

    Article  MathSciNet  Google Scholar 

  20. Godliński M., Kopczyński W., Nurowski P.: Locally Sasakian manifolds. Class. Quant. Grav. 17, L105–L115 (2000)

    Article  MATH  Google Scholar 

  21. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry II. New York: Interscience, 1969

    MATH  Google Scholar 

  22. Sasaki S.: Spherical space forms with normal contact metric 3-structure. J. Differ. Geom. 6, 307–315 (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansjörg Geiges.

Additional information

Communicated by G. W. Gibbons

Partially supported by DFG grant GE 1245/1-2 within the framework of the Schwerpunktprogramm “Globale Differentialgeometrie”.

Partially supported by grants MTM2004-04794 and MTM2007-61982 from MEC Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiges, H., Pérez, J.G. Contact Spheres and Hyperkähler Geometry. Commun. Math. Phys. 287, 719–748 (2009). https://doi.org/10.1007/s00220-008-0634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0634-y

Keywords

Navigation