Skip to main content
Log in

On Connected Diagrams and Cumulants of Erdős-Rényi Matrix Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Regarding the adjacency matrices of n-vertex graphs and related graph Laplacian we introduce two families of discrete matrix models constructed both with the help of the Erdős-Rényi ensemble of random graphs. Corresponding matrix sums represent the characteristic functions of the average number of walks and closed walks over the random graph. These sums can be considered as discrete analogues of the matrix integrals of random matrix theory.

We study the diagram structure of the cumulant expansions of logarithms of these matrix sums and analyze the limiting expressions as n → ∞ in the cases of constant and vanishing edge probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer M., Golinelli O.: Random incidence matrices: moments of the spectral density. J. Stat. Phys. 103, 301–337 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bessis D., Itzykson C., Zuber J.-B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Mathem. 1, 127–172 (1980)

    MathSciNet  Google Scholar 

  3. Bleher P., Its A.: Asymptotics of the partition function of a random matrix model. Ann. Inst. Fourier (Grenoble) 55, 1943–2000 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Bollobás B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Brézin E., Itzykson C., Parisi G., Zuber J.-B.: Planar diagrams. Commun. Math. Phys. 59, 35–51 (1978)

    Article  ADS  MATH  Google Scholar 

  6. Chung F.R.K.: Spectral Graph Theory. Amer. Math. Soc, Providence, RI (1997)

    MATH  Google Scholar 

  7. Di Francesco P., Ginsparg P., Zinn-Justin J.: 2D gravity and random matrices. Phys. Rep. 254, 1–133 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ercolani N.M., McLaughlin K.D.T-R.: Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques, and applications to graphical enumeration. Int. Mathem. research Notices 14, 755–820 (2003)

    Article  MathSciNet  Google Scholar 

  9. Eynard, B.: Formal matrix integrals and combinatorics of maps (in press) In: Random Matrices, Random Processes and Integrable Systems, Montreal. Proceedings, CRM Series in Mathematical Physics, to appear, available at http://arxiv.org/list/math-ph/0611087, 2006

  10. Füredi Z., Komlós J.: The eigenvalues of random symmetric matrices. Combinatorica 1, 233–241 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guionnet A.: Large deviations and stochastic calculus for large random matrices. Probab. Surv. 1, 72–172 (2004)

    Article  MathSciNet  Google Scholar 

  12. ’t Hooft G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461–473 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  13. Janson S., Luczak T., Rućinski A.: Random Graphs. Wiley, New York (2000)

    MATH  Google Scholar 

  14. Krivelevich M., Sudakov B.: The largest eigenvalue of sparse random graphs. Comb. Probab. Comput. 12, 61–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khorunzhiy O., Kirsch W., Müller P.: Lifshits tails for spectra of Erdős-Rényi random graphs. Ann. Appl. Probab. 16, 295–309 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khorunzhiy O., Shcherbina M., Vengerovsky V.: Eigenvalue distribution of large weighted random graphs. J. Math. Phys. 45, 1648–1672 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  17. Lando, S.K.: Lectures on Generating Functions. Student Mathematical Library, Vol. 23, Amer. Math. Soc. Providence, RI, 2003

  18. Malyshev, V.A., Minlos, R.A.: Gibbs random fields. Cluster expansions. Mathematics and its Applications (Soviet Series), Dordrecht: Kluwer Academic Publishers Group, 1991

  19. Mehta M.L.: Random Matrices. Academic Press, New York (1991)

    MATH  Google Scholar 

  20. Mohar B.: The Laplacian spectrum of graph, graph theory, combinatorics, and applications. Wiley, New York (1991)

    Google Scholar 

  21. Okounkov A.: Random matrices and random permutations. Intern. Math. Res. Not. 2000, 1043–1095 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stanley, R.P.: Enumerative Combinatorics, Vol. II. Cambridge: Cambridge University Press, 1999

  23. Vengerovsky V.V.: Asymptotics of the correlator of an ensemble of sparse random matrices. Mat. Fiz. Anal. Geom. 11, 135–160 (2004)

    MathSciNet  Google Scholar 

  24. Wigner E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Khorunzhiy.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khorunzhiy, O. On Connected Diagrams and Cumulants of Erdős-Rényi Matrix Models. Commun. Math. Phys. 282, 209–238 (2008). https://doi.org/10.1007/s00220-008-0533-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0533-2

Keywords

Navigation