Skip to main content
Log in

Openness of the Set of Non-characteristic Points and Regularity of the Blow-up Curve for the 1 D Semilinear Wave Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider here the 1 D semilinear wave equation with a power nonlinearity and with no restriction on initial data. We first prove a Liouville Theorem for that equation. Then, we consider a blow-up solution, its blow-up curve \({x\mapsto T(x)}\) and \({I_0\subset \mathbb{R}}\) the set of non-characteristic points. We show that I 0 is open and that T(x) is C 1 on I 0. All these results fundamentally use our previous result in [19] showing the convergence in selfsimilar variables for \({x\in I_0}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: Blowup for nonlinear hyperbolic equations. Volume 17 of Progress in Nonlinear Differential Equations and their Applications. Boston, MA: Birkhäuser Boston Inc. 1995

  2. Alinhac, S.: A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations. In: Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, 2002), Nantes:Univ. Nantes, 2002 pp. Exp. No. I, 33

  3. Antonini C., Merle F.: Optimal bounds on positive blow-up solutions for a semilinear wave equation. Internat. Math. Res. Notices. 21, 1141–1167 (2001)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli L.A., Friedman A.: Differentiability of the blow-up curve for one-dimensional nonlinear wave equations. Arch. Rati. Mech. Anal. 91(1), 83–98 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caffarelli L.A., Friedman. A.: The blow-up boundary for nonlinear wave equations. Trans. Amer. Math. Soc. 297(1), 223–241 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ginibre J., Soffer A., Velo G.: The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal. 110(1), 96–130 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kichenassamy S., Littman W.: Blow-up surfaces for nonlinear wave equations. I. Comm. Partial Differe. Eq. 18(3-4), 431–452 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kichenassamy S., Littman W.: Blow-up surfaces for nonlinear wave equations. II. Comm. Partial Differe. Eq. 18(11), 1869–1899 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Levine H.A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form \({Pu\sb{tt}=-Au+{\cal F}(u)}\). Trans. Amer.Math. Soc. 192, 1–21 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  10. Martel Y., Merle F.: A Liouville theorem for the critical generalized Korteweg-de Vries equation. J. Math. Pures Appl. (9). 79(4), 339–425 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Martel Y., Merle F.: Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation. Ann. of Math. (2). 155(1), 235–280 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Merle F., Raphael P.: On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation. Invent. Math. 156(3), 565–672 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Merle F., Raphael P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Annals of Math (2). 161((1), 157–222 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Merle F., Zaag H.: Optimal estimates for blowup rate and behavior for nonlinear heat equations. Comm. Pure Appl. Math. 51(2), 139–196 (1998)

    Article  MathSciNet  Google Scholar 

  15. Merle F., Zaag H.: A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Ann. 316(1), 103–137 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Merle F., Zaag H.: Determination of the blow-up rate for the semilinear wave equation. Amer. J. Math. 125, 1147–1164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Merle F., Zaag H.: Blow-up rate near the blow-up surface for semilinear wave equations. Internat. Math. Res. Notices. 19, 1127–1156 (2005)

    Article  MathSciNet  Google Scholar 

  18. Merle F., Zaag H.: Determination of the blow-up rate for a critical semilinear wave equation. Math. Annalen. 331(2), 395–416 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Merle F., Zaag H.: Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal. 253(1), 43–121 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Merle, F., Zaag, H.: Existence and characterization of characteristic points for a semilinear wave equation in one space dimension. In preparation (2008)

  21. Nouaili, N.: C 1, α regularity of the blow-up curve at non-characteristic points for the one dimensional semilinear wave equation. Comm. Partial Diff. Eq. (2008) (to appear)

  22. Zaag H.: On the regularity of the blow-up set for semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire. 19(5), 505–542 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Zaag H.: One dimensional behavior of singular N dimensional solutions of semilinear heat equations. Comm. Math. Phys. 225(3), 523–549 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Zaag, H.: Regularity of the blow-up set and singular behavior for semilinear heat equations. In: Mathematics & mathematics education (Bethlehem, 2000), River Edge, NJ: World Sci. Publishing, (2002) pp 337–347

  25. Zaag H.: Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation. Duke Math. J. 133(3), 499–525 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Zaag.

Additional information

Communicated by P. Constantin

This work was supported by a grant from the french Agence Nationale de la Recherche, project ONDENONLIN, reference ANR-06-BLAN-0185.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merle, F., Zaag, H. Openness of the Set of Non-characteristic Points and Regularity of the Blow-up Curve for the 1 D Semilinear Wave Equation. Commun. Math. Phys. 282, 55–86 (2008). https://doi.org/10.1007/s00220-008-0532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0532-3

Keywords

Navigation