Communications in Mathematical Physics

, Volume 281, Issue 3, pp 573–596 | Cite as

Asymptotic Analysis for a Vlasov-Fokker-Planck/ Compressible Navier-Stokes System of Equations

  • A. MelletEmail author
  • A. Vasseur


This article is devoted to the asymptotic analysis of a system of coupled kinetic and fluid equations, namely the Vlasov-Fokker-Planck equation and a compressible Navier-Stokes equation. Such a system is used, for example, to model fluid-particle interactions arising in sprays, aerosols or sedimentation problems. The asymptotic regime corresponding to a strong drag force and a strong Brownian motion is studied and the convergence toward a two phase macroscopic model is proved. The proof relies on a relative entropy method.


Entropy Weak Solution Asymptotic Analysis Relative Entropy Entropy Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amsden, A.A.: Kiva-3V Release 2, improvements to Kiva-3V. Tech. Rep., Los Alamos National Laboratory, 1999Google Scholar
  2. 2.
    Amsden, A.A., O’Rourke, P.J., Butler, T.D.: Kiva-2, a computer program for chemical reactive flows with sprays. Tech. Rep., Los Alamos National Laboratory, 1989Google Scholar
  3. 3.
    Baranger C., Desvillettes L.: Coupling Euler and Vlasov equations in the context of sprays: the local-in-time, classical solutions. J. Hyperbolic Differ. Eq. 3(1), 1–26 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bardos C., Golse F., Levermore C.D.: The acoustic limit for the Boltzmann equation. Arch. Ration. Mech. Anal. 153(3), 177–204 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Berres S., Bürger R., Karlsen K.H., Tory E.M.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math. 64(1), 41–80 (2003) (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Berthelin F., Vasseur A.: From kinetic equations to multidimensional isentropic gas dynamics before shocks. SIAM J. Math. Anal. 36(6), 1807–1835 (2005) (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Berthonnaud P.: Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés. C. R. Acad. Sci. Paris Sér. I Math. 331(8), 651–654 (2000)zbMATHMathSciNetADSGoogle Scholar
  8. 8.
    Bouchut F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys. 95(1–2), 113–170 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brenier Y.: Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differ. Eqs. 25(3–4), 737–754 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Brenier Y.: Hydrodynamic structure of the augmented Born-Infeld equations. Arch. Ration. Mech. Anal. 172(1), 65–91 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Carrillo J.A., Goudon T.: Stability and asymptotic analysis of a fluid-particle interaction model. Comm. Partial Differ. Eqs. 31(7–9), 1349–1379 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dafermos C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70(2), 167–179 (1979)zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Gidaspow D.: Multiphase flow and fluidization. Academic Press Inc, Boston, MA (1994)zbMATHGoogle Scholar
  14. 14.
    Golse F., Saint-Raymond L.: The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81–161 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Goudon T., Jabin P.-E., Vasseur A.: Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime. Indiana Univ. Math. J. 53(6), 1495–1515 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Goudon T., Jabin P.-E., Vasseur A.: Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime. Indiana Univ. Math. J. 53(6), 1517–1536 (2004)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hamdache K.: Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Indust. Appl. Math. 15(1), 51–74 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Laurent F., Massot M., Villedieu P.: Eulerian multi-fluid modeling for the numerical simulation of coalescence in polydisperse dense liquid sprays. J. Comput. Phys. 194(2), 505–543 (2004)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Lions, P.-L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal. 158(3), 173–193, 195–211 (2001)Google Scholar
  20. 20.
    Mellet A., Vasseur A.: Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations. Math. Models Methods Appl. Sci. 17(7), 1039–1063 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sartory W.K.: Three-component analysis of blood sedimentation by the method of characteristics. Math. Biosci. 33, 145–165 (1977)zbMATHCrossRefGoogle Scholar
  22. 22.
    Spannenberg A., Galvin K.P.: Continuous differential sedimentation of a binary suspension. Chem. Eng. in Australia 21, 7–11 (1996)Google Scholar
  23. 23.
    Williams F.A.: Spray combustion and atomization. Phys. of Fluids 1(6), 541–545 (1958)zbMATHCrossRefADSGoogle Scholar
  24. 24.
    Williams, F.A.: Combustion theory. Reading, MA: Benjamin Cummings Publ., 2nd ed., 1985Google Scholar
  25. 25.
    Yau H.-T.: Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22(1), 63–80 (1991)zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations