Skip to main content
Log in

Forced Vibrations via Nash-Moser Iteration

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct time periodic solutions for a cubic nonlinear wave equation with time-dependent forcing term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berti M., Bolle P.: Periodic solutions of nonlinear wave equations with general nonlinearities. Commun. Math. Phys. 243(2), 315–328 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Bricmont J., Kupiainen A., Schenkel A.: Renormalization group and the Melnikov problem for PDE’s. Commun. Math. Phys. 221(1), 101–140 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Coron J.-M.: Periodic solutions of a nonlinear wave equation without the assumption of monotonicity. Math. Ann. 262(2), 273–285 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bolle P., Ghoussoub N., Tehrani H.: The multiplicity of solutions in non-homogeneous boundary value problems. (English. English summary) Manus. Math. 101(3), 325–350 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourgain J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 148(2), 363–439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borel E.: Sur les équations aux dérivées partielles a coefficients constants et les fonctions non analytiques. C.R. Académie des Sciences de Paris 121, 933–935 (1895)

    Google Scholar 

  7. Brezis H., Nirenberg L.: Characterizations of the ranges of some nonlinear operators and applications to boundary value problems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(2), 225–326 (1978)

    MATH  MathSciNet  Google Scholar 

  8. Brezis H., Nirenberg L.: Forced vibrations for a nonlinear wave equation. Comm. Pure Appl. Math. 31(1), 1–30 (1978)

    MATH  MathSciNet  ADS  Google Scholar 

  9. Chierchia L.: A direct method for constructing solutions of the Hamilton-Jacobi equation. Meccanica 25, 246–252 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Craig, W.: Problèmes de petits diviseurs dans les équations aux dérivées partielles. (In: French, with English French summary) [Small divisor problems in partial differential equations]. Panoramas et Synthses, 9. Paris: Société Mathématique de France, 2000

  11. Craig W., Wayne G.: Newton’s method and periodic solutions of nonlinear waves equations. Commun. Pure Appl. Math. XLVI 1409–1498 (1993)

    Article  MathSciNet  Google Scholar 

  12. Craig, W., Wayne, G.: Periodic solutions of nonlinear Schrodinger equation and the Nash-Moser method. Hamiltonian Mechanics (Torun 1993) Semanis, J. (ed.) NATO Adv. Dist. Ser. B Phys. 331, New York: Plenum, 1994, pp. 103–122

  13. Lidskii E.I., Shulmann E.I.: Periodic solutions of the equation u tt  − u xx  + u 3 = 0. Funct. Anal. Appl. 22(4), 332–333 (1988)

    Article  MathSciNet  Google Scholar 

  14. De La Llave, R.: Variational methods for quasi-periodic solutions of partial differential equations. Hamiltonian systems and celestial mechanics (Ptzcuaro, 1998), World Sci. Monogr. Ser. Math., 6, River Edge, NJ: World Sci. Publishing, 2000, pp. 214–228

  15. Fokam, J.-M.: Periodic solutions of nonlinear waves equations. Master thesis, University of Cape Town, 1999

  16. Kato, T.: Perturbation theory for linear operators. Reprint of the 1980 edition, Classics in Mathematics, Berlin: Springer-Verlag, 1995

  17. Kuksin S., Pöschel J.: Invariant manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143, 149–179 (1996)

    Article  MATH  Google Scholar 

  18. Hofer H.: On the range of a wave operator with nonmonotone nonlinearity. Math. Nachr. 106, 327–340 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mauldon J.G.: Continuous functions with zero derivative almost everywhere. Quart. J. Math. Oxford (2) 17, 257–62 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mawhin J.: Periodic solutions of some semilinear wave equations and systems: a survey. Chaos, Solitons and Fractals 5(9), 1651–1669 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. McKenna P.J.: On solutions of a nonlinear wave equation when the ratio of the period to the length is irrational. Proc. Amer. Soc. 93(1), 59–64 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. Plotnikov P.I.: Existence of a countable set of periodic solutions on forced oscillations for a weakly nonlinear wave equation. Translation in Math. USSR-Sb. 64(2), 543–556 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Plotnikov P.I., Yungermann L.N.: Periodic solutions of weakly nonlinear wave equations with an irrational period to interval length. Transl. in Diff. Eq. 24(9), 1059–1065 (1988)

    MATH  Google Scholar 

  24. Pöschel J.: On the Fröhlich-Spencer-estimate in the theory of Anderson localization. Manus. Math. 70(1), 27–37 (1990)

    MATH  MathSciNet  Google Scholar 

  25. Rabinowitz P.H.: Periodic solutions of nonlinear hyperbolic partial differential equations. Comm. Pure Appl. Math. 20, 145–205 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rabinowitz P.: Free vibrations for a semilinear wave equation. Commun. Pure Appl Math. 31(1), 31–68 (1978)

    MATH  MathSciNet  ADS  Google Scholar 

  27. Rellich, F.: Perturbation theory of eigenvalues problems. New York-London-Paris: Gordon and Breach Science Publishers, 1969, pp. 47, 48

  28. Tanaka K.: Infinitely many periodic solutions for the equation: \({u_{tt}-u_{xx}\pm |u|^{p-1}u=f(x,t)}\) . II. Trans. Amer. Math. Soc. 307(2), 615–645 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marcel Fokam.

Additional information

Communicated by I.M. Sigal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fokam, JM. Forced Vibrations via Nash-Moser Iteration. Commun. Math. Phys. 283, 285–304 (2008). https://doi.org/10.1007/s00220-008-0509-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0509-2

Keywords

Navigation