Skip to main content
Log in

Global Solutions to the Three-Dimensional Full Compressible Magnetohydrodynamic Flows

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The equations of the three-dimensional viscous, compressible, and heat conducting magnetohydrodynamic flows are considered in a bounded domain. The viscosity coefficients and heat conductivity can depend on the temperature. A solution to the initial-boundary value problem is constructed through an approximation scheme and a weak convergence method. The existence of a global variational weak solution to the three-dimensional full magnetohydrodynamic equations with large data is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Admasm, R.A.: Sobolev spaces, Pure and Applied Mathematics, Vol. 65. New York-London: Academic Press, (1975)

    Google Scholar 

  2. Cabannes, H.: Theoretical Magnetofluiddynamics. New York: Academic Press, 1970

    Google Scholar 

  3. Chen, G.-Q., Wang, D.: Global solution of nonlinear magnetohydrodynamics with large initial data. J. Differ. Eqs. 182, 344–376 (2002)

    Article  MATH  Google Scholar 

  4. Chen, G.-Q., Wang, D.: Existence and continuous dependence of large solutions for the magnetohydrodynamic equations. Z. Angew. Math. Phys. 54, 608–632 (2003)

    MATH  Google Scholar 

  5. DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Ducomet, B., Feireisl, E.: The equations of Magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars. Commun. Math. Phys. 226, 595–629 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Fan, J., Jiang, S., Nakamura, G.: Vanishing shear viscosity limit in the magnetohydrodynamic equations. Commun. Math. Phys. 270, 691–708 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Feireisl, E.: On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53, 1707–1740 (2004)

    Article  MathSciNet  Google Scholar 

  9. Feireisl, E.: Dynamics of viscous compressible fluids. Oxford Lecture Series in Mathematics and its Applications, 26. Oxford: Oxford University Press, 2004

  10. Freistühler, H., Szmolyan, P.: Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal. 26, 112–128 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gerebeau, J.F., Bris, C.L., Lelievre, T.: Mathematical methods for the magnetohydrodynamics of liquid metals. Oxford: Oxford University Press, 2006

    Google Scholar 

  12. Goedbloed, H., Poedts, S.: Principles of magnetohydrodynamics with applications to laboratory and astrophysical plasmas. Cambridge: Cambridge University Press, 2004

    Google Scholar 

  13. Hoff, D.: Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Rat. Mech. Anal. 132, 1–14 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hoff, D.: Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids. Arch. Rat. Mech. Anal. 139, 303–354 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoff, D., Tsyganov, E.: Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics. Z. Angew. Math. Phys. 56, 791–804 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu, X., Wang, D.: Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Submitted for publication

  17. Kazhikhov, V., Shelukhin, V.V.: Unique global solution with respect to time of initial-boundary-value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41, 273–282 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kawashima, S., Okada, M.: Smooth global solutions for the one-dimensional equations in magnetohydrodynamics. Proc. Japan Acad. Ser. A Math. Sci. 58, 384–387 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kulikovskiy, A.G., Lyubimov, G.A.: Magnetohydrodynamics. Reading, MA: Addison-Wesley, 1965

    Google Scholar 

  20. Laudau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media, 2nd ed., New York: Pergamon, 1984

    Google Scholar 

  21. Lions, P.L.: Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press, 1996

  22. Lions, P.L.: Mathematical topics in fluid mechanics. Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press, 1998

  23. Liu, T.-P., Zeng, Y.: Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws. Memoirs Amer. Math. Soc. 599, 1997

  24. Novotný, A., Straškraba, I.: Introduction to the theory of compressible flow. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  25. Wang, D.: Large solutions to the initial-boundary value problem for planar magnetohydrodynamics. SIAM J. Appl. Math. 63, 1424–1441 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehua Wang.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Wang, D. Global Solutions to the Three-Dimensional Full Compressible Magnetohydrodynamic Flows. Commun. Math. Phys. 283, 255–284 (2008). https://doi.org/10.1007/s00220-008-0497-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0497-2

Keywords

Navigation