Communications in Mathematical Physics

, Volume 281, Issue 2, pp 369–385 | Cite as

Electromagnetic Wormholes via Handlebody Constructions

  • Allan Greenleaf
  • Yaroslav Kurylev
  • Matti Lassas
  • Gunther UhlmannEmail author


Cloaking devices are prescriptions of electrostatic, optical or electromagnetic parameter fields (conductivity \({\sigma(x)}\) , index of refraction n(x), or electric permittivity \({\epsilon(x)}\) and magnetic permeability \({\mu(x)}\)) which are piecewise smooth on \({\mathbb{R}^3}\) and singular on a hypersurface \({\Sigma}\) , and such that objects in the region enclosed by \({\Sigma}\) are not detectable to external observation by waves. Here, we give related constructions of invisible tunnels, which allow electromagnetic waves to pass between possibly distant points, but with only the ends of the tunnels visible to electromagnetic imaging. Effectively, these change the topology of space with respect to solutions of Maxwell’s equations, corresponding to attaching a handlebody to \({\mathbb{R}^3}\) . The resulting devices thus function as electromagnetic wormholes.


Electrical Impedance Tomography Energy Solution North Pole Selfadjoint Extension Single Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eleftheriades, G., Balmain, K.: Negative-Refraction Metamaterials. New York IEEE Press (Wiley-Interscience), 2005Google Scholar
  2. 2.
    Frankel T.: The geometry of physics. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  3. 3.
    Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Full-wave invisibility of active devices at all frequencies. Commun. Math. Phys. 275(3), 749–789 (2007)CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys. Rev. Lett. 99, 183901 (2007)CrossRefADSGoogle Scholar
  5. 5.
    Greenleaf A., Lassas M., Uhlmann G.: The Calderón problem for conormal potentials, I: Global uniqueness and reconstruction. Comm. Pure Appl. Math 56(3), 328–352 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Greenleaf, A., Lassas, M., Uhlmann, G.: Anisotropic conductivities that cannot detected in EIT. Physiological Measurement (special issue on Impedance Tomography), 24, 413–420 (2003)Google Scholar
  7. 7.
    Greenleaf A., Lassas M., Uhlmann G.: On nonuniqueness for Calderón’s inverse problem. Math. Res. Let. 10(5–6), 685–693 (2003)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hänninen I., Lindell I., Sihvola A.: Realization of generalized Soft-and-Hard Boundary. ProgrIn Electromag. Res. PIER 64, 317–333 (2006)CrossRefGoogle Scholar
  9. 9.
    Hawking S., Ellis G.: The Large Scale Structure of Space-Time. Cambridge Univ. Press, Cambridge (1973)zbMATHGoogle Scholar
  10. 10.
    Kildal P.-S.: Definition of artificially soft and hard surfaces for electromagnetic waves. Electron. Lett. 24, 168–170 (1988)CrossRefADSGoogle Scholar
  11. 11.
    Kildal P.-S.: Artificially soft-and-hard surfaces in electromagnetics. IEEE Trans. Ant. and Propag. 10, 1537–1544 (1990)CrossRefADSGoogle Scholar
  12. 12.
    Kilpeläinen T., Kinnunen J., Martio O.: Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12(3), 233–247 (2000)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kohn R., Shen H., Vogelius M., Weinstein M.: Cloaking via change of variables in electrical impedance tomography. Inverse Problems 24, 015016 (2008)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Kurylev Y., Lassas M., Somersalo E.: Maxwell’s equations with a polarization independent wave velocity: Direct and inverse problems. J. Math. Pures Appl. 86, 237–270 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lassas M., Taylor M., Uhlmann G.: On determining a non-compact Riemannian manifold from the boundary values of harmonic functions. Comm. Geom. Anal. 11, 207–222 (2003)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Leonhardt U.: Optical Conformal Mapping. Science 312, 1777–1780 (2006)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Milton G., Briane M., Willis J.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Pendry J.B., Schurig D., Smith D.R.: Controlling Electromagnetic Fields. Science 312, 1780–1782 (2006)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Pendry J.B., Schurig D., Smith D.R.: Calculation of material properties and ray tracing in transformation media. Optics Express 14, 9794 (2006)CrossRefADSGoogle Scholar
  20. 20.
    Schurig D., Mock J., Justice B., Cummer S., Pendry J., Starr A., Smith D.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)CrossRefADSGoogle Scholar
  21. 21.
    Weder, R.: A rigorous time-domain analysis of full–wave electromagnetic cloaking (Invisibility)., 2007
  22. 22.
    Visser M.: Lorentzian Wormholes. AIP Press, New York (1997)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Allan Greenleaf
    • 1
  • Yaroslav Kurylev
    • 2
  • Matti Lassas
    • 3
  • Gunther Uhlmann
    • 4
    Email author
  1. 1.Department of MathematicsUniversity of RochesterRochesterUSA
  2. 2.Department of Mathematical SciencesLoughborough Univ.LoughboroughUK
  3. 3.Helsinki University of Technology, Institute of MathematicsHelsinkiFinland
  4. 4.Department of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations