Abstract
We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative manifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold satisfying certain regularity assumptions. The idea of ‘quantum families’ (due to Woronowicz and Soltan) are relevant to our construction. A number of explicit examples are given and possible applications of our results to the problem of constructing quantum group equivariant spectral triples are discussed.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Banica, T.: Quantum automorphism groups of small metric spaces. Pacific J. Math. 219(1), 27–51 (2005)
Banica, T.: Quantum automorphism groups of homogeneous graphs. J. Funct. Anal. 224(2), 243–280 (2005)
Bichon, J.: Quantum automorphism groups of finite graphs, Proc. Amer. Math. Soc. 131(3), 665–673 (2003)
Bhowmick, J., Goswami, D.: Quantum isometry groups : examples and computations. http://arxiv.org/abs/0707.2648[math.QA], 2007
Chakraborty, P.S., Goswami, D., Sinha, K.B.: Probability and geometry on some noncommutative manifolds. J Operator Theory 49(1), 185–201 (2003)
Chakraborty, P.S., Pal, A.: Equivariant spectral triples on the quantum SU(2) group. K Theory 28, 107–126 (2003)
Connes A. (1994) “Noncommutative Geometry”. London-New York, Academic Press
Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for SU. J. Inst. Math. Jussieu 3(1), 17–68 (2004)
Connes, A., Moscovici, H.: Type III and spectral triples. http://arxiv.org/abs/:math/0609703v2[math. OA], 2006
Dabrowski, L., Landi, G., Sitarz, A., Suijlekom, W., Varilly, J.C.: The Dirac operator on SU. Commun. Math. Phys. 259(3), 729–759 (2005)
Donnelly, H.: Eigenfunctions of Laplacians on Compact Riemannian Manifolds. Asian J. Math. 10(1), 115–126 (2006)
Fröhlich, J., Grandjean, O., Recknagel, A.: Supersymmetric quantum theory and non-commutative geometry. Commun. Math. Phys. 203(1), 119–184 (1999)
Hajac, P., Masuda, T.: Quantum Double-Torus, Comptes Rendus Acad. Sci. Paris 327(6), Ser. I, Math. 553–558 (1998)
Rosenberg S. (1997) “The Laplacian on a Riemannian Manifold”. Cambridge, University Press
Soltan, P. M.: Quantum families of maps and quantum semigroups on finite quantum spaces. http://arxiv.org/abs/math/0610922v4[math.OA],2006
Maes, A., Van Daele, A.: Notes on compact quantum groups. Nieuw Arch Wisk. 4 16(1–2), 73–112 (1998)
Wang, S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)
Wang, S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195, 195–211 (1998)
Wang, S.: Structure and isomorphism classification of compact quantum groups A u (Q) and B u (Q). J. Operator Theory 48, 573–583 (2002)
Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)
Woronowicz, S.L.: “Compact quantum groups”. In: Symétries quantiques (Quantum symmetries) (Les Houches, 1995), edited by A. Connes et al., Amsterdam: Elsevier,1998, pp. 845–884
Woronowicz, S.L.: Pseudogroups, pseudospaces and Pontryagin duality, Proceedings of the International Conference on Mathematical Physics, Lausane. Lecture Notes in Physics 116, 407–412 (1979)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Connes
Supported in part by the Indian National Academy of Sciences.
Rights and permissions
About this article
Cite this article
Goswami, D. Quantum Group of Isometries in Classical and Noncommutative Geometry. Commun. Math. Phys. 285, 141–160 (2009). https://doi.org/10.1007/s00220-008-0461-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-008-0461-1