Skip to main content
Log in

A Dynamical Zeta Function for Pseudo Riemannian Foliations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate a generalization of geodesic random walks to pseudo Riemannian foliations. The main application we have in mind is to consider the logarithm of the associated zeta function as grand canonical partition function in a theory unifying aspects of general relativity, quantum mechanics and dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez López, J.A., Kordyukov, Y.A.: Long time behavior of leafwise heat flow for Riemannian foliations. Comp. Math. 125(2), 129–153 (2001)

    Article  MATH  Google Scholar 

  2. Andersson, L., Driver, B.K.: Finite-dimensional approximations to Wiener measure and path integral formulas on manifolds. J. Funct. Anal. 165(2), 430–498 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baillif, M.: Kneading operators, sharp determinants, and weighted Lefschetz zeta functions in higher dimensions. Duke Math. J. 124(1), 145–175 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baillif, M., Baladi, V.: Kneading determinants and spectra of transfer operators in higher dimensions: the isotropic case. Ergod. Th. Dynam. Syst. 25(5), 1437–1470 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baladi, V., Ruelle, D.: Sharp determinants. Invent. Math. 123(3), 553–574 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Bolte, J.: Semiclassical expectation values for relativistic particles with spin 1/2. Found. Phys. 31(2), 423–444 (2001)

    Article  MathSciNet  Google Scholar 

  7. Bolte, J., Keppeler, S.: A semiclassical approach to the Dirac equation. Ann. Physics 274(1), 125–162 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Combescure, M., Ralston, J., Robert, D.: A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition. Commun Math. Phys. 202(2), 463–480 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Connes, A.: Noncommutative geometry. Academic Press Inc., San Diego, CA (1994)

    MATH  Google Scholar 

  10. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Chaos: Classical and Quantum. Copenhagen: Niels Bohr Institute, 2005. Available at http://ChaosBook.org

  11. Cvitanović, P.: Chaotic field theory: a sketch. Phys. A 288(1–4), 61–80 (2000)

    MathSciNet  Google Scholar 

  12. Cvitanović, P., Dettmann, C.P., Mainieri, R., Vattay, G.: Trace formulas for stochastic evolution operators: weak noise perturbation theory. J. Statist. Phys. 93(3–4), 981–999 (1998)

    Article  MathSciNet  Google Scholar 

  13. Cvitanović, P., Dettmann, C.P., Mainieri, R., Vattay, G.: Trace formulae for stochastic evolution operators: smooth conjugation method. Nonlinearity 12(4), 939–953 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gilkey, P.B.: Asymptotic formulae in spectral geometry. Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton, FL (2004)

    Google Scholar 

  15. Gohberg, I., Goldberg, S., Krupnik, N.: Traces and determinants of linear operators. Volume 116 of Operator Theory: Advances and Applications. Basel: Birkhäuser Verlag, 2000

  16. Gray, A., Vanhecke, L.: Riemannian geometry as determined by the volumes of small geodesic balls. Acta Math. 142(3–4), 157–198 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gray, A., Willmore, T.J.: Mean-value theorems for Riemannian manifolds. Proc. Roy. Soc. Edinburgh Sect. A 92(3–4), 343–364 (1982)

    MathSciNet  Google Scholar 

  18. Gray, A.: The volume of a small geodesic ball of a Riemannian manifold. Michigan Math. J. 20, 329–344 (1974)

    Article  Google Scholar 

  19. Gutzwiller, M.C.: Chaos in classical and quantum mechanics, volume 1 of Interdisciplinary Applied Mathematics. New York: Springer-Verlag, 1990

  20. Liu, Z.J., Qian, M.: Gauge invariant quantization on Riemannian manifolds. Trans. Amer. Math. Soc. 331(1), 321–333 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Milnor, J., Thurston, W.: On iterated maps of the interval. In: Dynamical systems (College Park, MD, 1986–87), Volume 1342 of Lecture Notes in Math., Berlin: Springer, 1988, pp. 465–563

  22. Mümken, B.: A coincidence formula for foliated manifolds. PhD thesis, Westfälische Wilhelms-Universität Münster, 2002

  23. Mümken, B.: On tangential cohomology of Riemannian foliations. Amer. J. Math. 128(6), 1391–1408 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. O’Neill, B.: Semi-Riemannian geometry. Volume 103 of Pure and Applied Mathematics. New York: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], 1983

  25. Paul, T., Uribe, A.: The semi-classical trace formula and propagation of wave packets. J. Funct. Anal. 132(1), 192–249 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pflaum, M.J.: A deformation-theoretical approach to Weyl quantization on Riemannian manifolds. Lett. Math. Phys. 45(4), 277–294 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pollicott, M.: Periodic orbits and zeta functions. In: Handbook of dynamical systems Vol. 1A, Amsterdam: North-Holland, 2002, pp. 409–452

  28. Ruelle, D.: Dynamical zeta functions and transfer operators. Notices Amer. Math. Soc. 49(8), 887–895 (2002)

    MATH  MathSciNet  Google Scholar 

  29. Ruelle, D.: Thermodynamic formalism. Cambridge Mathematical Library. Cambridge: Cambridge University Press, second edition, 2004

  30. Sachs, R.K., Wu, H.H.: General relativity for mathematicians. Graduate Texts in Mathematics, Vol. 48. New York: Springer-Verlag, 1977

  31. Simon, B.: Trace ideals and their applications. Second ed., Volume 120 of Mathematical Surveys and Monographs. Providence, RI: Amer. Math. Soc. 2005

  32. Sunada, T.: Spherical means and geodesic chains on a Riemannian manifold. Trans. Amer. Math. Soc. 267(2), 483–501 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sunada, T.: Mean-value theorems and ergodicity of certain geodesic random walks. Comp. Math. 48(1), 129–137 (1983)

    MATH  MathSciNet  Google Scholar 

  34. Uribe, A.: Trace formulae. In: First Summer School in Analysis and Mathematical Physics (Cuernavaca Morelos, 1998), Volume 260 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2000, pp. 61–90

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Mümken.

Additional information

Communicated by A. Connes

Partially supported by DFG, SFB 478.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mümken, B. A Dynamical Zeta Function for Pseudo Riemannian Foliations. Commun. Math. Phys. 279, 585–594 (2008). https://doi.org/10.1007/s00220-008-0448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0448-y

Keywords

Navigation