Skip to main content
Log in

Nonlinear Dirac Operator and Quaternionic Analysis

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Properties of the Cauchy–Riemann–Fueter equation for maps between quaternionic manifolds are studied. Spaces of solutions in case of maps from a K3–surface to the cotangent bundle of a complex projective space are computed. A relationship between harmonic spinors of a generalized nonlinear Dirac operator and solutions of the Cauchy–Riemann–Fueter equation are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anselmi D. and Fré P. (1994). Topological σ-models in four dimensions and triholomorphic maps. Nucl. Phys. B 416(1): 255–300

    Article  MATH  ADS  Google Scholar 

  2. Atiyah, M., Hitchin, N.: The geometry and dynamics of magnetic monopoles. M. B. Porter Lectures. Princeton, NJ: Princeton University Press, 1988

  3. Bagger J. and Witten E. (1983). Matter couplings in N = 2 supergravity. Nucl. Phys. B 222(1): 1–10

    Article  ADS  MathSciNet  Google Scholar 

  4. Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, Volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Berlin: Springer-Verlag, second edition, 2004

  5. Belcastro S.-M. (2002). Picard lattices of families of K3 surfaces. Comm. Alg. 30(1): 61–82

    Article  MATH  MathSciNet  Google Scholar 

  6. Boyer C.P., Galicki K. and Mann B.M. (1993). Quaternionic reduction and Einstein manifolds. Comm. Anal. Geom. 1(2): 229–279

    MATH  MathSciNet  Google Scholar 

  7. Chen J. (1999). Complex anti-self-dual connections on a product of Calabi-Yau surfaces and triholomorphic curves. Commun. Math. Phys. 201(1): 217–247

    Article  MATH  ADS  Google Scholar 

  8. Chen J. and Li J. (2000). Quaternionic maps between hyperkähler manifolds. J. Differ. Geom. 55(2): 355–384

    MATH  Google Scholar 

  9. Donaldson, S.K., Thomas, R.P.: Gauge theory in higher dimensions. In: The geometric universe (Oxford, 1996), Oxford: Oxford Univ. Press 1998, pp. 31–47

  10. Feix B. (2001). Hyperkahler metrics on cotangent bundles. J. Reine Angew. Math. 532: 33–46

    MATH  MathSciNet  Google Scholar 

  11. Figueroa-O’Farrill J.M., Köhl C. and Spence B. (1998). Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves. Nucl. Phys. B 521(3): 419–443

    Article  MATH  ADS  Google Scholar 

  12. Friedman, R.: Algebraic surfaces and holomorphic vector bundles. Universitext. New York: Springer-Verlag, 1998

  13. Fueter R. (1934). Die Funktionentheorie der Differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen. Comment. Math. Helv. 7(1): 307–330

    Article  MathSciNet  Google Scholar 

  14. Griffiths P. and Harris J. (1978). Principles of algebraic geometry. Wiley-Interscience [John Wiley & Sons], New York

    MATH  Google Scholar 

  15. Hitchin N.J. (1987). The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc., III. Ser. 55: 59–126

    Article  MATH  MathSciNet  Google Scholar 

  16. Joyce D. (1998). Hypercomplex algebraic geometry. Quart. J. Math. Oxford Ser. (2) 49(194): 129–162

    Article  MATH  MathSciNet  Google Scholar 

  17. Kaledin, D.: Hyperkaehler structures on total spaces of holomorphic cotangent bundles. http://arxiv.org/list/alg-geom/9710026 , 1997

  18. Maciocia A. (1991). Metrics on the moduli spaces of instantons over Euclidean 4-space. Commun. Math. Phys. 135(3): 467–482

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Pidstrygach, V.Ya.: Hyper-Kähler manifolds and the Seiberg-Witten equations. Tr. Mat. Inst. Steklova, 246(Algebr. Geom. Metody, Svyazi i Prilozh.), 263–276, (2004)

  20. Sudbery A. (1979). Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 85: 199–225

    Article  MATH  MathSciNet  Google Scholar 

  21. Swann A. (1991). HyperKahler and quaternionic Kahler geometry. Math. Ann. 289(3): 421–450

    Article  MATH  MathSciNet  Google Scholar 

  22. Taubes, C.H.: Nonlinear generalizations of a 3-manifold’s Dirac operator. In: Trends in mathematical physics (Knoxville, TN, 1998), Volume 13 of AMS/IP Stud. Adv. Math., Providence, RI: Amer. Math. Soc. pp. 475–486 1999

  23. Wang C. (2003). Energy quantization for triholomorphic maps. Calc. Var. Partial Differ. Eqs. 18(2): 145–158

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Haydys.

Additional information

Communicated by G.W. Gibbons

This paper is based upon part of the author’s thesis; he was partially supported by the grant “Gauge theory and exceptional geometry” (Universität Bielefeld) while preparing the final form.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haydys, A. Nonlinear Dirac Operator and Quaternionic Analysis. Commun. Math. Phys. 281, 251–261 (2008). https://doi.org/10.1007/s00220-008-0445-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0445-1

Keywords

Navigation