Skip to main content
Log in

Lagrangian Subcategories and Braided Tensor Equivalences of Twisted Quantum Doubles of Finite Groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We classify Lagrangian subcategories of the representation category of a twisted quantum double D ω(G), where G is a finite group and ω is a 3-cocycle on it. In view of results of [DGNO] this gives a complete description of all braided tensor equivalent pairs of twisted quantum doubles of finite groups. We also establish a canonical bijection between Lagrangian subcategories of Rep(D ω(G)) and module categories over the category \({\rm Vec}_{G} ^{\omega}\) of twisted G-graded vector spaces such that the dual tensor category is pointed. This can be viewed as a quantum version of V. Drinfeld’s characterization of homogeneous spaces of a Poisson-Lie group in terms of Lagrangian subalgebras of the double of its Lie bialgebra [D]. As a consequence, we obtain that two group-theoretical fusion categories are weakly Morita equivalent if and only if their centers are equivalent as braided tensor categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakalov, B., Kirillov, Jr. A.: Lectures on tensor categories and modular functors. University Lecture Series, Vol. 21, Providence, RI: Amer. Math. Soc., 2001

  2. Coste A., Gannon T. and Ruelle P. (2000). Finite group modular data. Nucl. Phys. B 581: 679–717

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Deligne P. (2002). Catégories tensorielles. Moscow Math. J. 2(2): 227–248

    MATH  MathSciNet  Google Scholar 

  4. Drinfeld V. (1993). On Poisson homogeneous spaces of Poisson-Lie groups. Theoret. and Math. Phys. 95(2): 524–525

    Article  ADS  MathSciNet  Google Scholar 

  5. Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: Group-theoretical properties of nilpotent modular categories. http://arxiv.org/math.QA/0704.0195, 2007

  6. Dijkgraaf R., Pasquier V. and Roche P. (1990). Quasi-quantum groups related to orbifold models. Nucl. Phys. B. Proc. Suppl. 18B: 60–72

    MATH  ADS  MathSciNet  Google Scholar 

  7. Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi-Hopf algebras, group cohomology, and orbifold models. In: Integrable systems and quantum groups (Pavia, 1990), River Edge, NJ: World Sci. Publishing, (1992) pp. 75–98

  8. Dijkgraaf R., Vafa C., Verlinde E. and Verlinde H. (1989). The operator algebra of orbifold models. Commun. Math. Phys. 123: 485–526

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Etingof P. and Gelaki S. (2001). Isocategorical Groups. Int. Math. Res. Not. 2001(2): 59–76

    Article  MATH  MathSciNet  Google Scholar 

  10. Etingof, P., Kazhdan, D.: Quantization of Poisson algebraic groups and Poisson homogeneous spaces. In: Symetries quantiques (Les Houches, 1995), Amsterdam: North-Holland, 1998, pp. 935–946

  11. Eilenberg, S., MacLane, S.: Cohomology Theory of Abelian Groups and Homotopy theory I–IV. Proc. Nat. Acad. Sci. USA, 36, 443–447 (1950); 36, 657–663 (1950); 37, 307–310 (1951); 38, 325–329 (1952)

  12. Etingof P., Nikshych D. and Ostrik V. (2005). On fusion categories. Ann. of Math. 162: 581–642

    Article  MATH  MathSciNet  Google Scholar 

  13. Etingof P. and Ostrik V. (2004). Finite tensor categories. Mosc. Math. J. 3: 627–654

    MathSciNet  Google Scholar 

  14. Fuchs J., Runkel I. and Schweigert C. (2004). TFT construction of RCFT correlators III: Simple currents. Nucl. Phys. B 694: 277–353

    MATH  ADS  MathSciNet  Google Scholar 

  15. Goff C., Mason G. and Ng S. (2007). On the Gauge Equivalence of Twisted Quantum Doubles of Elementary Abelian and Extra-Special 2-Groups. J. Alg. 312(2): 849–875

    Article  MATH  MathSciNet  Google Scholar 

  16. Kac G.I. (1968). Extensions of groups to ring groups. Math. USSR Sb. 5: 451–474

    Article  Google Scholar 

  17. Kac G.I. and Palyutkin V.G. (1966). Finite ring groups. Trans. Moscow Math. Soc. 5: 251–294

    Google Scholar 

  18. Karpilovsky, G.: Projective representations of finite groups, Monographs and textbooks in pure and applied mathematics, New York: Marcel Dekker, Inc, 1985

  19. Kassel, C.: Quantum groups. Graduate texts in mathematics 155, New York: Springer-Verlag, 1995

  20. Mason, G., Ng, S.: Group cohomology and gauge equivalence of some twisted quantum doubles. Trans. Amer. Math. Soc. 353(9), 3465–3509 (2001) (electronic)

    Google Scholar 

  21. Müger M. (2003). From subfactors to categories and topology I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180: 81–157

    MATH  Google Scholar 

  22. Müger M. (2003). On the structure of modular categories. Proc. London Math. Soc. (3) 87: 291–308

    Article  MATH  MathSciNet  Google Scholar 

  23. Naidu D. (2007). Categorical Morita equivalence for group-theoretical categories. Commun. Alg. 35(11): 3544–3565

    Article  MATH  MathSciNet  Google Scholar 

  24. Natale S. (2003). On group theoretical Hopf algebras and exact factorization of finite groups. J. Algebra 270(1): 199–211

    Article  MATH  MathSciNet  Google Scholar 

  25. Ostrik V. (2003). Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2): 177–206

    Article  MATH  MathSciNet  Google Scholar 

  26. Ostrik V. (2003). Module categories over the Drinfeld double of a finite group. Int. Math. Res. Not. 2003(27): 1507–1520

    Article  MATH  MathSciNet  Google Scholar 

  27. Quinn, F.: Group categories and their field theories. Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr. 2, Conventry: Geom. Topol. Publ., 1999, pp. 407–453

  28. Schauenburg P. (2001). The monoidal center construction and bimodules. J. Pure Appl. Alg. 158: 325–346

    Article  MATH  MathSciNet  Google Scholar 

  29. Tambara D. and Yamagami S. (1998). Tensor categories with fusion rules of self-duality for finite abelian groups. J. Algebra 209(2): 692–707

    Article  MATH  MathSciNet  Google Scholar 

  30. Turaev, V.: Quantum invariants of knots and 3-manifolds. de Gruyter Stud. Math. Vol. 18, Berlin: de Gruyter, 1994

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Nikshych.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naidu, D., Nikshych, D. Lagrangian Subcategories and Braided Tensor Equivalences of Twisted Quantum Doubles of Finite Groups. Commun. Math. Phys. 279, 845–872 (2008). https://doi.org/10.1007/s00220-008-0441-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0441-5

Keywords

Navigation