Skip to main content
Log in

Unstable and Stable Galaxy Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Publisher's Erratum to this article was published on 15 April 2008

Abstract

To determine the stability and instability of a given steady galaxy configuration is one of the fundamental problems in the Vlasov theory for galaxy dynamics. In this article, we study the stability of isotropic spherical symmetric galaxy models f 0(E), for which the distribution function f 0 depends on the particle energy E only. In the first part of the article, we derive the first sufficient criterion for linear instability of f 0(E) : f 0(E) is linearly unstable if the second-order operator

$$A_{0} \equiv-\Delta+4\pi\int f_{0}^{\prime}(E)\{I-{\mathcal{P}}\}dv$$

has a negative direction, where \({\mathcal{P}}\) is the projection onto the function space {g(E, L)}, L being the angular momentum [see the explicit formulae (29) and (28)]. In the second part of the article, we prove that for the important King model, the corresponding A 0 is positive definite. Such a positivity leads to the nonlinear stability of the King model under all spherically symmetric perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Antonov V.A. (1961). Remarks on the problem of stability in stellar dynamics. Soviet Astr, AJ. 4: 859–867

    ADS  MathSciNet  Google Scholar 

  2. Antonov, V.A.: Solution of the problem of stability of stellar system Emden’s density law and the spherical distribution of velocities, Vestnik Leningradskogo Universiteta, Leningrad University, 1962

  3. Arnold V.I. and Avez A. (1968). Ergodic problems of classical mechanics. W. A. Benjamin, Inc., New York-Amsterdam

    Google Scholar 

  4. Arnold V.I. (1978). Mathematical methods of classical mechanics. Springer-Verlag, New York-Heidelberg

    MATH  Google Scholar 

  5. Barnes J., Hut P. and Goodman J. (1986). Dynamical instabilities in spherical stellar systems. Astrophy. J. 300: 112–131

    Article  ADS  MathSciNet  Google Scholar 

  6. Bartholomew P. (1971). On the theory of stability of galaxies. Monthly Notices of the Royal Astron. Soc. 151: 333

    ADS  Google Scholar 

  7. Bertin G. (2000). Dynamics of Galaxies. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  8. Binney J. and Tremaine S. (1987). Galactic Dynamics. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  9. Doremus J.P., Baumann G. and Feix M.R. (1973). Stability of a Self Gravitating System with Phase Space Density Function of Energy and Angular Momentum. Astron. and Astrophys. 29: 401

    ADS  Google Scholar 

  10. Gillon D., Cantus M., Doremus J.P. and Baumann G. (1976). Stability of self-gravitating spherical systems in which phase space density is a function of energy and angular momentum, for spherical perturbations. Astron. and Astrophys. 50(3): 467–470

    ADS  MathSciNet  Google Scholar 

  11. Fridman, A., Polyachenko, V.: Physics of Gravitating System. Vol I and II, Berlin-Heidelberg-New York: Springer-Verlag, 1984

  12. Glassey R.T. (1996). The Cauchy problem in kinetic theory. SIAM, Philadelphia, PA

    MATH  Google Scholar 

  13. Goodman J. (1988). An instability test for nonrotating galaxies. Astrophys. J. 329: 612–617

    Article  ADS  MathSciNet  Google Scholar 

  14. Guo Y. (1999). Variational method for stable polytropic galaxies. Arch. Rat. Mech. Anal. 147: 225–243

    Article  MATH  Google Scholar 

  15. Guo Y. (1999). On generalized Antonov stablility criterion for polytropic steady states. Contemp. Math. 263: 85–107

    Google Scholar 

  16. Guo Y. and Rein G. (1999). Stable steady states in stellar dynamics. Arch. Rat. Mech. Anal. 147(3): 225–243

    Article  MATH  MathSciNet  Google Scholar 

  17. Guo Y. and Rein G. (1999). Existence and stability of Camm type steady states in galactic dynamics. Indiana U. Math. J. 48: 1237–1255

    Article  MATH  MathSciNet  Google Scholar 

  18. Guo Y. and Rein G. (2001). Isotropic steady states in galactic dynamics. Commun. Math. Phys. 219: 607–629

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Guo, Y., Rein, G.: Isotropic steady states in stellar dynamics revisited., Los Alamos Preprint, 2002

  20. Henon M. (1973). Numerical Experiments on the Stability of Spherical Stellar Systems. Astron. and Astrophy. 24: 229

    ADS  Google Scholar 

  21. Guo Y. and Rein G. (2007). A non-variational approach to nonlinear stability in stellar dynamics applied to the King model. Commun. Math. Phys. 271(2): 489–509

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Kandrup H. and Signet J.F. (1985). A simple proof of dynamical stability for a class of spherical clusters. The Astrophys. J. 298: 27–33

    Article  ADS  Google Scholar 

  23. Kandrup H.E. (1991). A stability criterion for any collisionless stellar equilibrium and some concrete applications thereof. Astrophys. J. 370: 312–317

    Article  ADS  Google Scholar 

  24. King I.R. (1966). The structure of star clusters. III. Some simple dynamical models. Astron. J. 71: 64

    Article  ADS  Google Scholar 

  25. Lin Z. (2001). Instability of periodicBG waves. Math. Res. Letts. 8: 521–534

    MATH  Google Scholar 

  26. Lin, Z., Strauss, W.: Linear stability and instability of relativistic Vlasov-Maxwell systems. to appear in Comm. Pure Appl. Math.

  27. Lin Z. and Strauss W. (2007). Nonlinear stability and instability of relativistic Vlasov-Maxwell systems. Comm. Pure Appl. Math. 60(6): 789–837

    Article  MATH  MathSciNet  Google Scholar 

  28. Lin, Z., Strauss, W.: A sharp stability criterion for the Vlasov-Maxwell systems. submitted, http://arxiv.org/list/physics/0702023, 2007

  29. Lynden-Bell D. (1969). The Hartree-Fock exchange operator and the stability of galaxies. Monthly Notices of the Royal Astron. Soc. 144: 189

    ADS  Google Scholar 

  30. Lynden-Bell, D.: Lectures on stellar dynamics. Galactic dynamics and N-body simulations (Thessaloniki, 1993), Lecture Notes in Phys. 433, Berlin: Springer, 1994, pp. 3–31

  31. Merritt D. (1999). Elliptical Galaxy Dynamics. The Publications of the Astronomical Society of the Pacific 111(756): 129–168

    Article  ADS  Google Scholar 

  32. Palmer P.L. (1994). Stability of collisionless stellar systems: mechanisms for the dynamical structure of galaxies. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  33. Perez J. and Aly J.-J. (1996). Stability of spherical stellar systems - I. Analytical results. Monthly Notices of the Royal Astron. Soc. 280(3): 689–699

    ADS  Google Scholar 

  34. Pfaffelmoser K (1992). Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Differ. Eqs. 95(2): 281–303

    Article  MATH  MathSciNet  Google Scholar 

  35. Rein, G.: Collisionless Kinetic Equations from Astrophysics - The Vlasov-Poisson system. In: Handbook of Differential Equations. Edited by C. M. Dafermos, E. Feireisl, Oxford: Elsevier B. V, 2007

  36. Schaeffer J. (2004). Steady states in galactic dynamics. Arch. Rat. Mech. Anal. 172(1): 1–19

    Article  MATH  MathSciNet  Google Scholar 

  37. Sygnet J.F., des Forets G., Lachieze-Rey M. and Pellat R. (1984). Stability of gravitational systems and gravothermal catastrophe in astrophysics. Astrophys. J. 276: 737–745

    Article  ADS  Google Scholar 

  38. Wan Y-H. (1999). On nonlinear stability of isotropic models in stellar dynamics. Arch. Rational. Mech. Anal. 147: 245–268

    Article  MATH  ADS  Google Scholar 

  39. Wolansky G. (1999). On nonlinear stability of polytropic galaxies. Ann. Inst. Henri Poincare 16: 15–48

    Article  MATH  MathSciNet  Google Scholar 

  40. Yosida, K.: Functional analysis, Sixth edition. Grundlehren der Mathematischen Wissenschaften 123. Berlin-Heidelberg-New York: Springer-Verlag, 1980

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Guo.

Additional information

Communicated by H. Spohn

An erratum to this article can be found at http://dx.doi.org/10.1007/s00220-008-0486-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Li, Z. Unstable and Stable Galaxy Models. Commun. Math. Phys. 279, 789–813 (2008). https://doi.org/10.1007/s00220-008-0439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0439-z

Keywords

Navigation