Advertisement

Communications in Mathematical Physics

, Volume 279, Issue 2, pp 285–308 | Cite as

On the Spectrum of Certain Non-Commutative Harmonic Oscillators and Semiclassical Analysis

  • Alberto ParmeggianiEmail author
Article

Abstract

A localization and “cardinality” property, along with a multiplicity result, of the spectrum of certain 2 × 2 globally elliptic systems of ordinary differential operators, a class of vector-valued deformations of the classical harmonic oscillator called non-commutative harmonic oscillators, will be described here. The basic tool is the study of a semiclassical reference system.

Keywords

Large Eigenvalue Pseudodifferential Operator Minimax Theorem Ordinary Differential Operator Semiclassical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chazarain, J.: Spectre d’un hamiltonien quantique et mécanique classique. Comm. P.D.E. 5(6), 595–644 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Colin de Verdière, Y.: Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques. Comment. Math. Helv. 54(3), 508–522 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dimassi, M., Sjöstrand, J.: Spectral asymptotics and the semi-classical limit. London Math. Soc. Lect. Note Series 268, Cambridge: Cambridge University Press, 1999Google Scholar
  4. 4.
    Dozias, S.: Clustering for the spectrum of h-pseudodifferential operators with periodic flow on an energy Surface. J. Funct. Anal. 145, 296–311 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29(1), 39–79 (1975)zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Evans, L.C., Zworski, M.: Lectures on Semiclassical Analysis. Notes of the course, UC Berkeley, http://math.berkeley.edu/~zworski/semiclassical.pdf
  7. 7.
    Helffer, B.: Théorie Spectrale Pour Des Opérateurs Globalement Elliptiques. Astérisque 112, Paris: Soc. Math. de France, 1984Google Scholar
  8. 8.
    Helffer, B., Robert, D.: Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques. Ann. Inst. Fourier 31(3), 169–223 (1981)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Helffer, B., Robert, D.: Propriétés asymptotiques du spectre d’opérateurs pseudodifferentiels sur \({\mathbb{R}}^n\) . Commun. P. D. E. 7, 795–882 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Helffer, B., Robert, D.: Comportement semi-classique du spectre des hamiltoniens quantiques hypoelliptiques. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 9(3), 405–431 (1982)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Helffer, B., Robert, D.: Puits de potentiel généralisés et asymptotique semi-classique. Ann. Inst. Henri Poincaré 41(3), 291–331 (1984)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Ichinose, T., Wakayama, M.: Zeta functions for the spectrum of the non-commutative harmonic oscillators. Commun. Math. Phys. 258, 697–739 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Ichinose, T., Wakayama, M.: Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations. Kyushu J. Math. 59(1), 39–100 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ivrii, V.: Microlocal Analysis and Precise Spectral Asymptotics. Springer Monographs in Mathematics. Berlin-Heidelberg-New York: Springer Verlag, 1998Google Scholar
  15. 15.
    Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis. Berlin-Heidelberg-New York: Universitext Springer-Verlag, 2002Google Scholar
  16. 16.
    Nagatou, K., Nakao, M.T., Wakayama, M.: Verified numerical computations for eigenvalues of non-commutative harmonic oscillators. Numer. Funct. Anal. Opt. 23, 633–650 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ochiai, H.: Non-commutative harmonic oscillators and Fuchsian ordinary differential operators. Comm. Math. Phys. 217, 357–373 (2001)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Ochiai, H.: Non-commutative harmonic oscillators and the connection problem for the Heun differential equation. Lett. Math. Phys. 70, 133–139 (2004)zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Parenti, C., Parmeggiani, A.: Lower Bounds for Systems with Double Characteristics. J. D’Analyse Math. 86, 49–91 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Parmeggiani, A., Wakayama, M.: Oscillator representations and systems of ordinary differential equations. Proc. Nat. Acad. Sci. U.S.A. 98(1), 26–30 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Parmeggiani, A., Wakayama, M.: Non-commutative harmonic oscillators-I, -II. Forum Math. 14, 539–604 (2002) ibid. 669–690Google Scholar
  22. 22.
    Parmeggiani, A., Wakayama, M.: Corrigenda and remarks to: Non-commutative harmonic oscillators-I. Forum Math. 15, 955–963 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Parmeggiani, A.: On the spectrum and the lowest eigenvalue of certain non-commutative harmonic oscillators. Kyushu J. Math. 58(2), 277–322 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Parmeggiani, A.: On the spectrum of certain noncommutative harmonic oscillators. In: Proceedings of the Conference Around hyperbolic problems: in memory of Stefano, Annali dell’Università di Ferrara 52, 431–456 (2006)Google Scholar
  25. 25.
    Parmeggiani, A.: Introduction to the Spectral Theory of Non-Commutative Harmonic Oscillators. COE Lecture Note, vol. 8. Kyushu University, The 21st Century COE Program “DMHF”, Fukuoka, vi+233 (2008)Google Scholar
  26. 26.
    Robert, D.: Propriétés spectrales d’opérateurs pseudodifferentiels. Comm. Partial Differ. Eqs. 3(9), 755–826 (1978)zbMATHCrossRefGoogle Scholar
  27. 27.
    Robert, D.: Calcul fonctionnel sur les opérateurs admissibles et application. J. Func. Anal. 45, 74–94 (1982)zbMATHCrossRefGoogle Scholar
  28. 28.
    Robert, D.: Autour de l’Approximation Semi-Classique. Progress in Mathematics 68, Basel-Boston: Birkhäuser, 1987Google Scholar
  29. 29.
    Shubin, M.: Pseudodifferential Operators and Spectral Theory. Springer Verlag, Berlin-Heidelberg-New york (1987)zbMATHGoogle Scholar
  30. 30.
    Taylor, M.: Pseudodifferential Operators. Princeton University Press, Princeton, NJ (1981)zbMATHGoogle Scholar
  31. 31.
    Weinstein, A.: Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke Math. J. 44(4), 883–892 (1977)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BolognaBolognaItaly

Personalised recommendations