Skip to main content
Log in

Recursion and Growth Estimates in Renormalizable Quantum Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we show that there is a Lipatov bound for the radius of convergence for superficially divergent one-particle irreducible Green functions in a renormalizable quantum field theory if there is such a bound for the superficially convergent ones. In the nonnegative case the radius of convergence turns out to be min{ρ,1/b 1}, where ρ is the bound on the convergent ones, the instanton radius, and b 1 the first coefficient of the β-function, while in general it is bounded by the above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer C., Frink A. and Kreckel R. (2002). Introduction to the GiNaC Framework for Symbolic Computation within the C Programming Language. J. Symb. Comp. 33: 1–12

    Article  MATH  MathSciNet  Google Scholar 

  • Bell J., Burris S. and Yeats K. (2006). Counting Rooted Trees: The Universal Law t(n) ∼ C ρn n −3/2. Elec. J. Combin. 13: R63

    MathSciNet  Google Scholar 

  • Bierenbaum I., Kreimer D. and Weinzierl S. (2007). The next to leading ladder approximation. Phys. Lett. B 646: 129–133

    Article  ADS  Google Scholar 

  • Canfield E.R. (1984). Remarks on an asymptotic method in combinatorics. J. Combin. Theory Ser. A 37(3): 348–352

    Article  MATH  MathSciNet  Google Scholar 

  • Connes A. and Kreimer D. (2001). Renormalization in quantum field theory and the Riemann-Hilbert problem. II: The beta-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216: 215

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Cvitanović P. (1977). Asymptotic estimates and gauge invariance. Nucl. Phys. B 127: 176–188

    Article  ADS  Google Scholar 

  • David F., Feldman J. and Rivasseau V. (1988). On the large order behaviour of On the large order behaviour of \(\phi^4_4\). Commun. Math. Phys. 116: 215

    Article  ADS  MathSciNet  Google Scholar 

  • Drmota M. (2004). Combinatorics and asymptotics on trees. Cubo Journal 6: 2

    Google Scholar 

  • Drmota M. (1997). Systems of functional equations. Random Struct. Alg. 10: 103–124

    Article  MATH  MathSciNet  Google Scholar 

  • Ebrahimi-Fard K., Gracia-Bondia J.M. and Patras F. (2007). A Lie theoretic approach to renormalization. Commun. Math. Phys. 276(2): 519–549

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Online draft available at http://algo.inria.fr/flajolet/Publications/books.html, to appear Camb. Univ. press, 2008

  • Harary, F., Robinson, R.W., Schwenk, A.J.: Twenty-step algorithm for determining the asymptotic number of trees on various species. J. Austral. Math. Soc. (Ser. A) 20(4), 483–503 (1975); Corrigendum: J. Austral. Math. Soc. (Ser. A) 41(3), 325 (1986)

  • Johnson K., Baker M. and Willey R. (1964). Self-Energy of the Electron. Phys. Rev. 136(4B): B1111–B1119

    Article  ADS  MathSciNet  Google Scholar 

  • Kreimer D. (1999). On overlapping divergences. Commun. Math. Phys. 204: 669

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Kreimer, D.: Unique factorization in perturbative QFT. Nucl. Phys. Proc. Suppl. 116, 392 (2003); \’Etude for linear Dyson Schwinger Equations, IHES preprint 2006, http://www.ihes.fr/PREPRINTS/2006/P/P-06-23.pdf, 2006

  • Kreimer D. (2005). Structures in Feynman graphs: Hopf algebras and symmetries. Proc. Symp. Pure Math. 73: 43

    MathSciNet  Google Scholar 

  • Kreimer D. (2006). Anatomy of a gauge theory. Ann. Phys. 321: 2757

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Kreimer, D.: Dyson Schwinger equations: From Hopf algebras to number theory. In: Renormalization and Universality in Math. Phys., Fields Inst. Commun. 50, I. Binder, D. Kreimer (eds.). Providence, RI: Amer. Math. Soc., 2007, pp. 225–248

  • Kreimer D. and Yeats K. (2006). An Étude in non-linear Dyson-Schwinger Equations. Nucl. Phys. B Proc. Suppl. 160: 116–121

    Article  ADS  MathSciNet  Google Scholar 

  • Lalley S.P. (1993). Finite range random walk on free groups and homogeneous trees. Ann. Probab. 21(4): 2087–2130

    Article  MATH  MathSciNet  Google Scholar 

  • Mack G. and Todorov I.T. (1973). Conformal-invariant Green functions without ultraviolet divergences. Phys. Rev. D 6: 1764

    Article  ADS  Google Scholar 

  • Magnen J., Nicolo F., Rivasseau V. and Seneor R. (1987). A Lipatov bound for ϕ4 in four-dimensions Euclidean field theory. Commun. Math. Phys. 108: 257

    Article  ADS  MathSciNet  Google Scholar 

  • Meir, A., Moon, J.W.: On an asymptotic method in enumeration. J. Combin. Theory Ser. A 51(1), 77–89 (1989) Erratum: J. Combin. Theory Ser. A 52(1), 163 (1989)

    Google Scholar 

  • Odlyzko, A.M.: Asymptotic Enumeration Methods. Handbook of combinatorics, Vols. 1, 2. Amsterdam: Elsevier, 1995, pp. 1063–1229

  • Otter R. (1948). The number of trees. Ann. Math. 49: 583–599

    Article  MathSciNet  Google Scholar 

  • Pólya G. (1937). Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Math. 68: 145–254

    Article  MATH  Google Scholar 

  • Pólya G. and Read R.C. (1987). Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Springer-Verlag, New York

    Google Scholar 

  • Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences, published on-line at http://www.research.att.com/~njas/sequences/, 2006

  • Suijlekom W.D. (2006). The Hopf algebra of Feynman graphs in QED. Lett. Math. Phys. 77: 265

    Article  MATH  MathSciNet  Google Scholar 

  • van Suijlekom, W.D.: Renormalization of gauge fields: A Hopf algebra approach. Commun. Math. Phys. 276, 773–798 (2007) http://arxiv.org/list/hep-th/0610137

  • Woods A.R. (1997). Coloring rules for finite trees, probability of monadic second order sentences. Random Struct. Alg. 10: 453–485

    Article  MATH  MathSciNet  Google Scholar 

  • Zinn-Justin J. (2003). Quantum Field Theory and Critical Phenomena 4th ed. Oxford Univ. Press, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Kreimer.

Additional information

Communicated by J.Z. Imbrie

Research supported by grant NSF-DMS/0603781.

Supported by CNRS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreimer, D., Yeats, K. Recursion and Growth Estimates in Renormalizable Quantum Field Theory. Commun. Math. Phys. 279, 401–427 (2008). https://doi.org/10.1007/s00220-008-0431-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0431-7

Keywords

Navigation