Skip to main content
Log in

Localization for Yang-Mills Theory on the Fuzzy Sphere

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a new model for Yang-Mills theory on the fuzzy sphere in which the configuration space of gauge fields is given by a coadjoint orbit. In the classical limit it reduces to ordinary Yang-Mills theory on the sphere. We find all classical solutions of the gauge theory and use nonabelian localization techniques to write the partition function entirely as a sum over local contributions from critical points of the action, which are evaluated explicitly. The partition function of ordinary Yang-Mills theory on the sphere is recovered in the classical limit as a sum over instantons. We also apply abelian localization techniques and the geometry of symmetric spaces to derive an explicit combinatorial expression for the partition function, and compare the two approaches. These extend the standard techniques for solving gauge theory on the sphere to the fuzzy case in a rigorous framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madore J. (1992). The Fuzzy Sphere. Class. Quant. Grav. 9: 69–88

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Grosse H., Klimcik C. and Presnajder P. (1996). Towards Finite Quantum Field Theory in Noncommutative Geometry. Int. J. Theor. Phys. 35: 231–244

    Article  MATH  MathSciNet  Google Scholar 

  3. Klimcik C. (1998). Gauge Theories on the Noncommutative Sphere. Commun. Math. Phys. 199: 257–279

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Carow-Watamura U. and Watamura S. (2000). Noncommutative Geometry and Gauge Theory on Fuzzy Sphere. Commun. Math. Phys. 212: 395–413

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Baez S., Balachandran A.P., Ydri B. and Vaidya S. (2000). Monopoles and Solitons in Fuzzy Physics. Commun. Math. Phys. 208: 787–798

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Grosse H., Rupp C.W. and Strohmaier A. (2002). Fuzzy Line Bundles, the Chern Character and Topological Charges over the Fuzzy Sphere. J. Geom. Phys. 42: 54–63

    Article  MATH  MathSciNet  Google Scholar 

  7. Grosse H., Maceda M., Madore J. and Steinacker H. (2002). Fuzzy Instantons. Int. J. Mod. Phys. A 17: 2095

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Presnajder P. (2003). Gauge Fields on the Fuzzy Sphere. Mod. Phys. Lett. A18: 2431–2438

    ADS  MathSciNet  Google Scholar 

  9. Steinacker H. (2004). Quantized Gauge Theory on the Fuzzy Sphere as Random Matrix Model. Nucl. Phys. B679: 66–98

    Article  ADS  MathSciNet  Google Scholar 

  10. Castro-Villarreal P., Delgadillo-Blando R. and Ydri B. (2005). A Gauge-Invariant UV-IR Mixing and the Corresponding Phase Transition for U(1) Fields on the Fuzzy Sphere. Nucl. Phys. B704: 111–153

    Article  ADS  MathSciNet  Google Scholar 

  11. Ydri, B.: The One-Plaquette Model Limit of NC Gauge Theory in 2D. Nucl. Phys. B762, 148–188 (2007); Ydri, B.: Quantum Equivalence of NC and YM Gauge Theories in 2 D and Matrix Theory. http://arxiv.org/list/hepth/0701057, 2007

  12. Aschieri P., Grammatikopoulos T., Steinacker H. and Zoupanos G. (2006). Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking. JHEP 0609: 026

    Article  ADS  MathSciNet  Google Scholar 

  13. Karabali D., Nair V.P. and Polychronakos A.P. (2002). Spectrum of Schrödinger Field in a Noncommutative Magnetic Monopole. Nucl. Phys. B627: 565–579

    Article  ADS  MathSciNet  Google Scholar 

  14. Alekseev, A.Yu., Recknagel, A., Schomerus, V.: Noncommutative Worldvolume Geometries: Branes on SU(2) and Fuzzy Spheres. J. High Energy Phys. 9909, 023 (1999); Brane Dynamics in Background Fluxes and Noncommutative Geometry. J. High Energy Phys. 0005 010 (2000)

  15. Iso S., Kimura Y., Tanaka K. and Wakatsuki K. (2001). Noncommutative Gauge Theory on Fuzzy Sphere from Matrix Model. Nucl. Phys. B 604: 121–147

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Azuma, T., Bal, S., Nagao, K., Nishimura, J.: Nonperturbative Studies of Fuzzy Spheres in a Matrix Model with the Chern-Simons Term. J. High Energy Phys. 0405, 005 (2004); O’Connor, D., Ydri, B.: Monte Carlo Simulation of a NC Gauge Theory on The Fuzzy Sphere. JHEP 0611 016 (2006)

  17. Berenstein D., Maldacena J.M. and Nastase H. (2002). Strings in Flat Space and pp-Waves from \({\cal N} = 4\) Super Yang-MillsJ. High Energy Phys. 0204: 013

    Article  ADS  MathSciNet  Google Scholar 

  18. Witten E. (1992). Two-Dimensional Gauge Theories Revisited. J. Geom. Phys. 9: 303–368

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Minahan J.A. and Polychronakos A.P. (1994). Classical Solutions for Two-Dimensional QCD on the Sphere. Nucl. Phys. B422: 172–194

    Article  ADS  MathSciNet  Google Scholar 

  20. Gross D.J. and Matytsin A. (1994). Instanton Induced Large N Phase Transitions in Two-Dimensional and Four-Dimensional QCD. Nucl. Phys. B429: 50–74

    Article  ADS  Google Scholar 

  21. Douglas M.R. and Nekrasov N.A. (2001). Noncommutative Field Theory. Rev. Mod. Phys. 73: 977–1029

    Article  ADS  MathSciNet  Google Scholar 

  22. Szabo R.J. (2003). Quantum Field Theory on Noncommutative Spaces. Phys. Rept. 378: 207–299

    Article  MATH  ADS  Google Scholar 

  23. Jeffrey, L.C., Kirwan, F.C.: Localization for Nonabelian Group Actions. Topology 34, 291–327 (1995); Intersection Theory on Moduli Spaces of Holomorphic Bundles of Arbitrary Rank on a Riemann Surface. Ann. Math. 148 109–196 (1998)

    Google Scholar 

  24. Paradan P.-E. (2000). The Moment Map and Equivariant Cohomology with Generalized Coefficients. Topology 39: 401–444

    Article  MATH  MathSciNet  Google Scholar 

  25. Jeffrey L.C., Kiem Y.-H., Kirwan F.C. and Woolf J. (2003). Cohomology Pairings on Singular Quotients in Geometric Invariant Theory. Transf. Groups 8: 217–259

    Article  MATH  MathSciNet  Google Scholar 

  26. Woodward C.T. (2005). Localization for the Norm-Square of the Moment Map and the Two-Dimensional Yang-Mills Integral. J. Symbl. Geom. 3(1): 17–54

    MathSciNet  Google Scholar 

  27. Beasley C. and Witten E. (2005). Nonabelian Localization for Chern-Simons Theory. J. Diff. Geom. 70: 183–323

    MATH  MathSciNet  Google Scholar 

  28. Blau M. and Thompson G. (1995). Localization and Diagonalization: A Review of Functional Integral Techniques for Low-Dimensional Gauge Theories and Topological Field Theories. J. Math. Phys. 36: 2192–2236

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Szabo, R.J.: Equivariant Cohomology and Localization of Path Integrals. Lect. Notes Phys. M63, 1–319 (2000); Equivariant Localization of Path Integrals. http://arxiv.org/list/hepth/9608068, 1996

  30. Migdal, A.A.: Recursion Equations in Gauge Field Theories. Sov. Phys. JETP42, 413 (1975) [Zh. Eksp. Teor. Fiz. 69810–822 (1975)]

  31. Rusakov B.E. (1990). Loop Averages and Partition Functions in U(N) Gauge Theory on Two-Dimensional Manifolds. Mod. Phys. Lett. A5: 693–703

    ADS  MathSciNet  Google Scholar 

  32. Paniak L.D. and Szabo R.J. (2003). Instanton Expansion of Noncommutative Gauge Theory in Two Dimensions. Commun. Math. Phys. 243: 343–387

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Paniak, L.D., Szabo, R.J.: Lectures on Two-Dimensional Noncommutative Gauge Theory 1: Classical Aspects. Sveske Fiz. Nauka A16, 1–27 (2003); Lectures on Two-Dimensional Noncommutative Gauge Theory 2: Quantization. Lect. Notes Phys. 662, Berlin-Heidelberg-New York:Springer, 2005, pp. 205–237

  34. Paniak L.D. and Szabo R.J. (2003). Open Wilson Lines and Group Theory of Noncommutative Yang-Mills Theory in Two Dimensions. J. High Energy Phys. 0305: 029

    Article  ADS  MathSciNet  Google Scholar 

  35. Gross D.J. and Nekrasov N.A. (2001). Solitons in Noncommutative Gauge Theory. J. High Energy Phys. 0103: 044

    Article  ADS  MathSciNet  Google Scholar 

  36. Helgason, S.:Differential Geometry, Lie Groups and Symmetric Spaces. New York:Academic Press, 1978; Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators and Spherical Functions. New York:Academic Press, 1984

  37. Caselle M. and Magnea U. (2004). Random Matrix Theory and Symmetric Spaces. Phys. Rept. 394: 41–156

    Article  ADS  MathSciNet  Google Scholar 

  38. Szabo R.J. (2005). Finite Volume Gauge Theory Partition Functions in Three Dimensions. Nucl. Phys. B723: 163–197

    Article  ADS  Google Scholar 

  39. Grosse H. and Steinacker H. (2005). Finite Gauge Theory on Fuzzy \({\mathbb{C}} P^2\) Nucl. Phys. B707: 145–198

    Article  ADS  MathSciNet  Google Scholar 

  40. Madore J., Schraml S., Schupp P. and Wess J. (2000). Gauge Theory on Noncommutative Spaces. Eur. Phys. J. C 16: 161–167

    Article  ADS  MathSciNet  Google Scholar 

  41. Berline N., Getzler E. and Vergne M. (1992). Heat Kernels and Dirac Operators. Springer-Verlag, Berlin Heidelberg-New York

    MATH  Google Scholar 

  42. Griguolo L., Seminara D. and Szabo R.J. (2005). Instantons, Fluxons and Open Gauge String Theory. Adv. Theor. Math. Phys. 9: 775–860

    MATH  MathSciNet  Google Scholar 

  43. Chu C.-S., Madore J. and Steinacker H. (2001). Scaling Limits of the Fuzzy Sphere at One Loop. J. High Energy Phys. 0108: 038

    Article  ADS  MathSciNet  Google Scholar 

  44. Behr W., Meyer F. and Steinacker H. (2005). Gauge Theory on Fuzzy S 2  ×  S 2 and Regularization on Noncommutative \({\mathbb{R}}^4\) J. High Energy Phys. 0507: 040

    Article  ADS  MathSciNet  Google Scholar 

  45. Guillemin V. and Sternberg S. (1984). Symplectic Techniques in Physics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  46. Itzykson C. and Zuber J.-B. (1980). The Planar Approximation. 2. J. Math. Phys. 21: 411

    Article  ADS  MathSciNet  Google Scholar 

  47. Guillemin V., Lerman E. and Sternberg S. (1988). On the Kostant Multiplicity Formula. J. Geom. Phys. 5: 721–750

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Szabo.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinacker, H., Szabo, R.J. Localization for Yang-Mills Theory on the Fuzzy Sphere. Commun. Math. Phys. 278, 193–252 (2008). https://doi.org/10.1007/s00220-007-0386-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0386-0

Keywords

Navigation