Skip to main content
Log in

A Uniform Quantum Version of the Cherry Theorem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Consider in \(L^2(\mathbb{R}^2)\) the operator family \(H(\epsilon):=P_0(\hbar,\omega)+\epsilon F_0\) . P 0 is the quantum harmonic oscillator with diophantine frequency vector ω, F 0 a bounded pseudodifferential operator with symbol decreasing to zero at infinity in phase space, and \(\epsilon \in {\mathbb{C}}\) . Then there exist \(\epsilon^\ast > 0\) independent of \(\hbar\) and an open set \(\Gamma\subset{\mathbb{C}}^2\setminus{\mathbb{R}}^2\) such that if \(|\epsilon| < \epsilon^\ast\) and \(\omega\in\Gamma\) , the quantum normal form near P 0 converges uniformly with respect to \(\hbar\) . This yields an exact quantization formula for the eigenvalues, and for \(\hbar=0\) the classical Cherry theorem on convergence of Birkhoff’s normal form for complex frequencies is recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambusi D., Graffi S. and Paul T. (1999). Normal Forms and Quantization Formulae. Commun. Math. Phys. 207: 173–195

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Cherry T.W. (1928). On the solution of Hamiltonian systems of differential equations in the neighboorhood of a singular point. Proc. London. Math. Soc. 27: 151–170

    Article  Google Scholar 

  3. Folland, G.: Harmonic analysis in phase space. Princeton, NJ: Princeton University Press, 1988

    Google Scholar 

  4. Gallavotti G. (1982). A criterion of integrability for perturbed harmonic oscillators. Wick ordering in classical mechanics. Commun. Math. Phys. 87: 365–383

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Graffi S. and Paul T. (1987). The Schrödinger equation and canonical perturbation theory. Commun. Math. Phys. 108: 25–41

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Melin A. and Sjöstrand J. (2003). Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2. Autour de l’analyse microlocale. Astérisque No. 284: 181–244

    Google Scholar 

  7. Ottolenghi A. (1991). On convergence of normal forms for complex frequencies. J. Math. Phys. 34: 5205–5216

    Article  ADS  MathSciNet  Google Scholar 

  8. Robert, D.: Autour de l’approximation semiclassique. Basel: Birkhäuser, 1987

    Google Scholar 

  9. Rüssmann, H.: Konvergente Reihenentwicklungen in der Störungstheorie der Himmelsmechanik. Selecta Mathematica, V, 93–60, Heidelberger Taschenbücher, 201. Berlin-New York: Springer, 1979

  10. Siegel C.L. (1941). On the integrals of canonical systems. Ann. Math. 42: 806–822

    Article  Google Scholar 

  11. Siöstrand J. (1992). Semi-excited levels in non-degenerate potential wells. Asymptotic Analysis 6: 29–43

    MathSciNet  Google Scholar 

  12. Siegel C.L., Moser J.: Lectures on Celestial Mechanics. Berlin-Heidalberg-New York: Springer- Verlag, 1971

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Graffi.

Additional information

Communicated by B. Simon.

Partially supported by PAPIIT-UNAM IN106106-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graffi, S., Villegas-Blas, C. A Uniform Quantum Version of the Cherry Theorem. Commun. Math. Phys. 278, 101–116 (2008). https://doi.org/10.1007/s00220-007-0380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0380-6

Keywords

Navigation