Skip to main content
Log in

A Variational Analysis of Einstein–Scalar Field Lichnerowicz Equations on Compact Riemannian Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish new existence and non-existence results for positive solutions of the Einstein–scalar field Lichnerowicz equation on compact manifolds. This equation arises from the Hamiltonian constraint equation for the Einstein–scalar field system in general relativity. Our analysis introduces variational techniques, in the form of the mountain pass lemma, to the analysis of the Hamiltonian constraint equation, which has been previously studied by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A. and Rabinowitz P. (1973). Dual variational methods in critical point theory and applications. J. Funct. Anal. 14: 349–381

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubin, T.: Nonlinear Analysis on manifolds. Monge-Ampre Equations. Grund. der Math. Wissenschaften, 252. New York:Springer-Verlag, 1982

  3. Bartnik, R., Isenberg, J.: The constraint equations. In: The Einstein Equations and the Large Scale Behavior of Gravitational Fields edited by P.T. Chruściel, H. Friedrich, Basel:Birkhäuser, 2004, pp. 1–39

  4. Brendle, S.: Blow-up phenomena for the Yamabe PDE in high dimensions. To appear J. Amer. Math. Soc., doi:10.1090/S0894-0347-07-00575-9, 2007

  5. Choquet-Bruhat Y. and Geroch R. (1969). Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14: 329–335

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Choquet-Bruhat Y., Isenberg J. and Pollack D. (2006). The Einstein–scalar field constraints on asymptotically Euclidean manifolds. Chin. Ann. Math. ser. B 27(1): 31–52

    Article  MATH  MathSciNet  Google Scholar 

  7. Choquet-Bruhat Y., Isenberg J. and Pollack D. (2007). The constraint equations for the Einstein–scalar field system on compact manifolds. Class. Quantum Grav. 24: 809–828

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Choquet-Bruhat, Y., York, J.: The Cauchy Problem. In: General Relativity and Gravitation - The Einstein Centenary, edited by A. Held New York:Plenum, 1980, pp. 99–172

  9. Druet O. and Hebey E. (2004). Blow-up examples for second order elliptic PDEs of critical Sobolev growth. Trans. Amer. Math. Soc. 357: 1915–1929

    Article  MathSciNet  Google Scholar 

  10. Foures-Bruhat Y. (1952). Théorème d’existence pour certains systèmes d’équations aux dérivées partialles non linéaires. Acta. Math. 88: 141–225

    Article  MATH  MathSciNet  Google Scholar 

  11. Isenberg J. (1995). Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Grav. 12: 2249–2274

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Isenberg J., Maxwell D. and Pollack D. (2005). A gluing constructions for non-vacuum solutions of the Einstein constraint equations. Adv. Theor. Math. Phys. 9(1): 129–172

    MATH  MathSciNet  Google Scholar 

  13. Ilias S. (1983). Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes. Ann. Inst. Fourier 33: 151–165

    MATH  MathSciNet  Google Scholar 

  14. Kazdan J.L. and Warner F.W. (1975). Scalar curvature and conformal deformation of Riemannian structure. J. Differ. Geom. 10: 113–134

    MATH  MathSciNet  Google Scholar 

  15. Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics 65, Providance RI: Amer. Math. Soc., 1986

  16. Rendall A. (2004). Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound. Class. Quantum Grav. 21: 2445–2454

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Rendall, A.: Mathematical properties of cosmological models with accelerated expansion. In: Analytical and numerical approaches to mathematical relativity, Lecture Notes in Phys. 692, Berlin:Springer, 2006, pp. 141–155

  18. Rendall A. (2005). Intermediate inflation and the slow-roll approximation. Class. Quantum Grav. 22: 1655–1666

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Sahni, V.: Dark matter and dark energy. In: Physics of the Early Universe, edited by E. Papantonopoulos Berlin:Springer 2005

  20. Trudinger N.S. (1968). Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22: 265–274

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pollack.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebey, E., Pacard, F. & Pollack, D. A Variational Analysis of Einstein–Scalar Field Lichnerowicz Equations on Compact Riemannian Manifolds. Commun. Math. Phys. 278, 117–132 (2008). https://doi.org/10.1007/s00220-007-0377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0377-1

Keywords

Navigation