Skip to main content
Log in

Continuity of Velocity Gradients in Suspensions of Rod–like Molecules

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the Doi model for suspensions of rod–like molecules in the dilute regime. For certain parameter values, the velocity gradient vs. stress relation defined by the stationary and homogeneous flow is not rank–one monotone. We then consider the evolution of possibly large perturbations of stationary flows. We prove that, even in the absence of a microscopic cut–off, discontinuities in the velocity gradient cannot occur in finite time. The proof relies on a novel type of estimate for the Smoluchowski equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bird, R.B., Curtiss, Ch.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory. New York: Wiley Interscience, 1987

  2. Constantin P. (2005). Nonlinear Fokker-Planck Navier-Stokes systems. Comm. Math. Sci. 3: 531–544

    MATH  MathSciNet  Google Scholar 

  3. Prost J. and Gennes P.G. De (1993). The physics of liquid crystals. Oxford Univ Press, Oxford

    Google Scholar 

  4. Doi M. (1981). Molecular-dynamics and rheological properties of concentrated–solutions of rodlike polymers in isotropic and liquid–crystalline phases. J. Polym. Sci. Polym. Phys. Ed. 19: 229–243

    Article  ADS  Google Scholar 

  5. Doi M. and Edwards S.F. (1986). The theory of polymer dynamics.Oxford Univ. Press, Oxford

    Google Scholar 

  6. Lelièvre, T.: PhD thesis, CERMICS, Ecole Nationale des Ponts et Chaussées, 2004

  7. Lions P.-L. (1998). Mathematical topics in fluid mechanics, Vol 2. Oxford Univ. Press, Oxford

    MATH  Google Scholar 

  8. Lions P.-L. and Masmoudi N. (2000). Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann. Math. B 21(2): 131–146

    Article  MATH  MathSciNet  Google Scholar 

  9. Masmoudi, N.: Private communication, 2004

  10. Loeschcke, Ch., Otto, F., Wachsmuth, J.: Suspensions in rod-like molecules: Nonlinear stability of homogeneous flows. Preprint

  11. Malkus, D.S., Nohel, J.A., Plohr, B.J.: Analysis of the spurt phenomena for a non-Newtonian fluid. In: Problems Involving Change of type, K. Kirchgässuer ed., Lecture Notes in Physics 359, Berlin New York: Springer, 1990, pp. 112–132

  12. Nohel J.A. and Pego R.L. (1997). On the generation of discontinuous shearing motions of a non–Newtonian fluid. Arch. Rat. Mech. Anal. 139: 355–376

    Article  MATH  MathSciNet  Google Scholar 

  13. Nohel J.A., Pego R.L. and Tzavaras A.E. (1990). Stability of discontinuous steady states in shearing motions of a non–Newtonian fluid. Proc. Roy. Soc. Edinburgh 115 A: 39–59

    MathSciNet  Google Scholar 

  14. Otto F. (2001). The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Diff. Equations 26: 101–174

    Article  MATH  MathSciNet  Google Scholar 

  15. Otto F. and Villani C. (2000). Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173: 361–400

    Article  MATH  MathSciNet  Google Scholar 

  16. Petersen P. (1991). Riemannian Geometry. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  17. Temam R. (1984). Navier-Stokes Equations. North-Holland, Amsterdam

    MATH  Google Scholar 

  18. Vinogradov G., Malkin A., Yanovskii Y., Borisenkova E., Yarlykov B. and Berezhnaya G. (1972). Viscoelastic properties and flow of narrow distribution polybutadienes and polyisoprenes. J. Polymer Sci. Part A-2 10: 1061–1084

    Article  Google Scholar 

  19. Weigant V.A. and Kazhikhov A.V. (1995). Stability “in the large” of an initial–boundary value problem for equations of the potential flows of a compressible viscous fluid at low Reynolds numbers (Russian). Dokl. Akad. Nauk 340(4): 460–462

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios E. Tzavaras.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otto, F., Tzavaras, A.E. Continuity of Velocity Gradients in Suspensions of Rod–like Molecules. Commun. Math. Phys. 277, 729–758 (2008). https://doi.org/10.1007/s00220-007-0373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0373-5

Keywords

Navigation