Skip to main content
Log in

Pairs of Compatible Associative Algebras, Classical Yang-Baxter Equation and Quiver Representations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given an associative multiplication in matrix algebra compatible with the usual one or, in other words, a linear deformation of the matrix algebra, we construct a solution to the classical Yang-Baxter equation. We also develop a theory of such deformations and construct numerous examples. It turns out that these deformations are in one-to-one correspondence with representations of certain algebraic structures, which we call M-structures. We also describe an important class of M-structures related to the affine Dynkin diagrams of A, D, E-type. These M-structures and their representations are described in terms of quiver representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Odesskii, A.V., Sokolov, V.V.: Algebraic structures connected with pairs of compatible associative algebras. International Mathematics Research Notices, 2006, Article ID 43734, 35 pages (2006)

  2. Magri F. (1978). A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19: 1156–1162

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Golubchik I.Z. and Sokolov V.V. (2004). Factorization of the loop algebra and integrable top-like systems. Theoret. Math. Phys. 141(1): 1329–1347

    Article  MathSciNet  Google Scholar 

  4. Odesskii A.V. and Sokolov V.V. (2006). Integrable matrix equations related to pairs of compatible associative algebras. J. Phys. A: Math. Gen. 39: 12447–12456

    Article  MATH  MathSciNet  Google Scholar 

  5. Mikhailov A.V. and Sokolov V.V. (2000). Integrable ODEs on associative algebras. Commun. Math. Phys. 211(1): 231–251

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Drinfeld, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986), Providence, RI: Amer. Math. Soc., 1987, pp. 798–820

  7. Belavin A.A. and Drinfeld V.G. (1982). Solutions of the classical Yang-Baxter equation for simple Lie algebras (Russian). Funks. Anal. i Pril. 16(3): 1–29

    MathSciNet  Google Scholar 

  8. Semenov-Tian-Shansky M.A. (1983). What a classical r-matrix is (Russian). Funkts. Anal. i Pril. 17(4): 17–33

    Google Scholar 

  9. Sklyanin, E.K.: Separation of variables—new trends. In: Quantum field theory, integrable models and beyond (Kyoto, 1994). Progr. Theoret. Phys. Suppl. No. 118, 35–60 (1995)

  10. Schofield A. (1992). General representations of quivers. Proc. London Math. Soc. 65: 46–64

    Article  MATH  MathSciNet  Google Scholar 

  11. Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras. Mem. Amer. Math. Soc., 173 providence, RI: Amer. Math. Soc., 1976

  12. Ringel, C.M.: Tame algebras and integral quadratic forms. Springer Lect. Notes 1099, Berlin-Heidelberg-New York: Springer, 1984

  13. Golubchik I.Z. and Sokolov V.V. (2002). Compatible Lie brackets and integrable equations of the principle chiral model type. Func. Anal. and Appl. 36(3): 172–181

    Article  MATH  MathSciNet  Google Scholar 

  14. Golubchik I.Z. and Sokolov V.V. (2005). Factorization of the loop algebras and compatible Lie brackets. J. Nonlin. Math. Phys. 12(1): 343–350

    Article  MathSciNet  Google Scholar 

  15. Golubchik I.Z. and Sokolov V.V. (2006). Compatible Lie brackets and Yang-Baxter equation. Theoret. Math. Phys. 146(2): 159–169

    Article  MathSciNet  Google Scholar 

  16. Odesskii A.V. and Sokolov V.V. (2006). Compatible Lie brackets related to elliptic curve. J. Math. Phys. 47: 013506

    Article  ADS  MathSciNet  Google Scholar 

  17. VanDer Waerden B.L. (1967). Algebra. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  18. Bourbaki N. (1968). Groupes et algébres de Lie. Hermann, Paris

    MATH  Google Scholar 

  19. Vinberg E.B. (1971). Disete linear groups that are generated by reflections. Izv. Akad. Nauk SSSR, Ser. Mat. 35: 1072–1112

    MATH  MathSciNet  Google Scholar 

  20. Aquiar M. (2001). On the associative analog of Lie bialgebras. J. Algebra. 244(2): 492–532

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Odesskii.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odesskii, A., Sokolov, V. Pairs of Compatible Associative Algebras, Classical Yang-Baxter Equation and Quiver Representations. Commun. Math. Phys. 278, 83–99 (2008). https://doi.org/10.1007/s00220-007-0361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0361-9

Keywords

Navigation