Skip to main content
Log in

Existence and Regularity of Weak Solutions to the Quasi-Geostrophic Equations in the Spaces L p or \(\dot{H}^{-1/2}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the 2D quasi-geostrophic equation with and without dissipation. We give global existence results of weak solutions for an initial data in the space L p or \(\dot{H}^{-1/2}\) . In the dissipative case, when the initial data is in L p, p > 2, we give a regularity result of these solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berselli L. (2002). Vanishing viscosity limit and long-time behavior for 2D quasi-geostrophic equations. Indiana Univ. Math. J. 51: 905–930

    Article  MATH  MathSciNet  Google Scholar 

  2. Constantin P., Córdoba D. and Wu J. (2001). On the critical dissipative quasigeostrophic equation. Indiana Univ. Math. J. 50: 97–107

    MATH  MathSciNet  Google Scholar 

  3. Constantin P., Majda A. and Tabak E. (1994). Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7: 1495–1533

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Constantin P. and Wu J. (1999). Behavior of solutions of 2D quasi-geostrophic equations. Siam J. Math. Anal. 30: 937–948

    Article  MATH  MathSciNet  Google Scholar 

  5. Córdoba A. and Córdoba D. (2004). A maximum principle applied to Quasi-Geostrophic equations. Commun. Math. Phys. 249: 511–528

    Article  MATH  ADS  Google Scholar 

  6. David G. and Journé J.-L. (1984). A boundedness criterion for generelized Calderón-Zygmund operators. Ann. of Math. 120: 371–397

    Article  MathSciNet  Google Scholar 

  7. Delort J.-M. (1991). Existence de nappes de tourbillon en dimension deux. J Amer. Math. Soc. 4: 553–586

    Article  MATH  MathSciNet  Google Scholar 

  8. Dubois S. (2002). What is a solution to the Navier-Stokes equations?. C. R. Acad. Sci. Paris 335: 27–32

    MATH  Google Scholar 

  9. Furioli G., Lemarié-Rieusset P.G. and Terraneo E. (2000). Unicité dans \(L^{3}({{\mathbb{R}}}^{3})\) et d’autres espaces limites pour Navier-Stokes Revista Mat. Iberoamer. 16: 605–667

    MATH  Google Scholar 

  10. Ju N. (2005). The maximum principle and the global attractor for the dissipative 2D quasi-geostrophique equations. Commun. Math. Phys. 255: 161–181

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, arXiv, 2006

  12. Kozono H. and Sohr H. (1996). Remark on the uniqueness of weak solutions to the Navier-Stokes equations. Analysis 16: 255–271

    MATH  MathSciNet  Google Scholar 

  13. Lemarié-Rieusset, P.G.: Recent developments in the Navier-Stokes problem. Research Notes in Maths. 431, London: Chapman and Hall ICRC Press, 2002

  14. Lemarié-Rieusset P.G. (1999). Solutions faibles d’énergie infinie pour les équations de Navier-Stokes dans \({{\mathbb{R}}}^{3}\) C. R. Acad. Sci. Paris 328: 1133–1138

    MATH  Google Scholar 

  15. Lions P.L. (1996). Mathematical topics in fluid mechanics Vol. 1. Oxford Science Publication, Oxford

    MATH  Google Scholar 

  16. Majda A. and Bertozzi A. (2002). Vorticity and incompressible fluid flow, Cambridge texts in applied mathematics. Camb. Univ. Press, Cambridge

    Google Scholar 

  17. Marchand F. and Lemarié-Rieusset P.G. (2005). Solutions auto-similaires non-triviales pour l’équation quasi-géostrophique dissipative critique. C. R. Acad. Sci. Paris 341: 535–538

    MATH  Google Scholar 

  18. Marchand F. (2006). Propagation of Sobolev regularity for the critical dissipative quasi-geostrophic equation. Asymp. Analysis 49(3/4): 275–293

    MATH  MathSciNet  Google Scholar 

  19. Marchand, F.: Weak-strong uniqueness criterions for the critical dissipative quasi-geostrophic equation. Preprint

  20. Meyer M. (1989). Une classe d’espaces fonctionnels de type BMO. Application aux intégrales singulières. Ark. Math. 27: 305–318

    Article  MATH  ADS  Google Scholar 

  21. Resnick, S.: Dynamical Problem in Nonlinear Advective Partial Differential Equations. Ph. D. thesis, University of Chicago, 1995

  22. Rudin W. (1963). Fourier analysis on groups. Interscience Publ., New York

    Google Scholar 

  23. Schoenberg I.J. (1938). Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44: 522–536

    Article  MATH  MathSciNet  Google Scholar 

  24. Stein E.M. (1961). The characterization of functions arising as potentials I. Bull. Amer. Math. Soc. 67: 102–104

    Article  MathSciNet  Google Scholar 

  25. Triebel, H.: Theory of function spaces. Monographs in Mathematics 78, Basel: Birkhäuser Verlag, 1983

  26. Wu J. (2001). Dissipative quasi-geostrophic equations with L p data. Electronic J. Differ. Eq. 56: 1–13

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Marchand.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchand, F. Existence and Regularity of Weak Solutions to the Quasi-Geostrophic Equations in the Spaces L p or \(\dot{H}^{-1/2}\) . Commun. Math. Phys. 277, 45–67 (2008). https://doi.org/10.1007/s00220-007-0356-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0356-6

Keywords

Navigation