Abstract
In this paper we study minimal affinizations of representations of quantum groups (generalizations of Kirillov-Reshetikhin modules of quantum affine algebras introduced in [Cha1]). We prove that all minimal affinizations in types A, B, G are special in the sense of monomials. Although this property is not satisfied in general, we also prove an analog property for a large class of minimal affinizations in types C, D, F. As an application, the Frenkel-Mukhin algorithm [FM1] works for these modules. For minimal affinizations of type A, B we prove the thin property (the l-weight spaces are of dimension 1) and a conjecture of [NN1] (already known for type A). The proof of the special property is extended uniformly for more general quantum affinizations of quantum Kac-Moody algebras.
Similar content being viewed by others
References
Bourbaki, N.: Groupes et algèbres de Lie, Chapitres IV-VI. Paris:Hermann, 1968
Bernard D. and LeClair A. (1991). Quantum group symmetries and nonlocal currents in 2D QFT. Commun. Math. Phys. 142(1): 99–138
Bazhanov V.V. and Reshetikhin N. (1990). Restricted solid-on-solid models connected with simply laced algebras and conformal field theory. J. Phys. A 23(9): 1477–1492
Chari V. (1995). Minimal affinizations of representations of quantum groups: the rank 2 case. Publ. Res. Inst. Math. Sci. 31(5): 873–911
Chari V. (2001). On the fermionic formula and the Kirillov-Reshetikhin conjecture. Int. Math. Res. Not. 2001(12): 629–654
Cherednik I. (1987). A new interpretation of Gelfand-Tzetlin bases. Duke Math. J. 54(2): 563–577
Cherednik, I.: Quantum groups as hidden symmetries of classic representation theory. In: Differential geometric methods in theoretical physics (Chester, 1988), Teaneck, NJ: World Sci. Publishing, 1989, pp. 47–54
Chari V. and Moura A. (2005). Characters and blocks for finite-dimensional representations of quantum affine algebras. Int. Math. Res. Not. 2005(5): 257–298
Chari V. and Moura A. (2006). Characters of fundamental representations of quantum affine algebras. Acta Appl. Math. 90(1–2): 43–63
Chari, V., Moura, A.: Kirillov–Reshetikhin modules associated to G 2. math.RT/0604281, 2006
Chari V. and Pressley A. (1991). Quantum Affine Algebras. Commun. Math. Phys. 142: 261–283
Chari, V., Pressley A.: Quantum affine algebras and their representations. In: Representations of groups (Banff, AB, 1994), CMS Conf. Proc, 16, Providence, RI: Amer. Math. Soc., 1995, pp. 59–78
Chari V. and Pressley A. (1996). Minimal affinizations of representations of quantum groups: the simply laced case, J. Algebra 184(1): 1–30
Chari V. and Pressley A. (1995). Minimal affinizations of representations of quantum groups: the nonsimply-laced case. Lett. Math. Phys. 35(2): 99–114
Chari V. and Pressley A. (1996). Minimal affinizations of representations of quantum groups: the irregular case. Lett. Math. Phys. 36(3): 247–266
Chari V. and Pressley A. (1994). A Guide to Quantum Groups. Cambridge University Press, Cambridge
Chari, V., Pressley, A.: Integrable and Weyl modules for quantum affine sl2. In: Quantum groups and Lie theory (Durham, 1999), London Math. Soc. Lecture Note Ser. 290, Cambridge: Cambridge Univ. Press 2001, pp. 48–62
Dorey P. (1991). Root systems and purely elastic S-matrices. Nucl. Phys. B 358(3): 654–676
Drinfeld, V.G.: Quantum groups, In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Providence, RI: Amer. Math. Soc. (1987), pp. 798–820
Drinfeld V.G. (1988). A new realization of Yangians and of quantum affine algebras. Sov. Math. Dokl. 36(2): 212–216
Delius G.W., MacKay N.J. (2006) Affine quantum groups. Encyclopedia of Mathematical Physics, Oxford:Elsevier, 2006
Fourier G. and Littelmann P. (2007). Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions. Adv. Math. 211(2): 566–593
Frenkel E. and Mukhin E. (2001). Combinatorics of q-Characters of Finite-Dimensional Representations of Quantum Affine Algebras. Commun. Math. Phys., 216(1): 23–57
Frenkel E. and Mukhin E. (2002). The Hopf algebra \(Rep {\mathcal{U}}_q \hat{gl}_\infty\). Selecta Math. (N.S.) 8(4): 537–635
Frenkel E. and Reshetikhin N. (1999). The q-Characters of Representations of Quantum Affine Algebras and Deformations of W-Algebras. In: Recent Developments in Quantum Affine Algebras and Related Topics. Cont. Math. 248: 163–205
Frenkel I.B. and Reshetikhin N. (1992). Quantum affine algebras and holonomic difference equations. Commun. Math. Phys. 146(1): 1–60
Grojnowski, I., Kleber, M.: Generalized Kirillov-Reshetikhin Modules for Quantum Affine Algebras. http://www.msri.org/publications/ln/msri/2002/ssymmetry/grojnowski/1/index.html, 2002
Hernandez D. (2004). Algebraic approach to q,t-characters. Adv. Math. 187(1): 1–52
Hernandez D. (2005). Representations of quantum affinizations and fusion product. Transform. Groups 10(2): 163–200
Hernandez D. (2005). Monomials of q and q,t-chraracters for non simply-laced quantum affinizations. Math. Z. 250(2): 443–473
Hernandez D. (2006). The Kirillov-Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596: 63–87
Hernandez, D.: Drinfeld coproduct, quantum fusion tensor category and applications. Proc. London Math. Soc. (to appear) math.QA/0504269, 2005
Hernandez, D.: Smallness problem for quantum affine algebras and quiver varieties. math. QA/0607526, 2006
Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Tsuboi, Z.: Paths, crystals and fermionic formulae. In: MathPhys odyssey, 2001, Prog. Math. Phys. 23, Boston, MA, Birkhäusher Boston, 2002, 205–272
Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Yamada, Y.: Remarks on fermionic formula. In: Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math. 248, Providence, RI: Amer. Math. Soc. 1999, pp. 243–291
Jimbo M. (1985). A q-difference analogue of \({\mathcal{U}}({\mathfrak{g}})\) and the Yang-Baxter equation. Lett. Math. Phys. 10(1): 63–69
Kac V.: (1990) Infinite dimensional Lie algebras. 3rd Edition, Cambridge:Cambridge University Press, 1990
Kleber M. (1997). Combinatorial structure of finite-dimensional representations of Yangians: the simply-laced case. Internat. Math. Res. Notices 1997(4): 187–201
Knight H. (1995). Spectra of tensor products of finite-dimensional representations of Yangians. J. Alg. 174(1): 187–196
Kuniba A. and Nakanishi T. (2002). The Bethe equation at q = 0, the Möbius inversion formula and weight multiplicities, II: The X n case. J. Alg. 251(2): 577–618
Kuniba A., Nakamura S. and Hirota R. (1996). Pfaffian and determinant solutions to a discretized Toda equation for B r , C r and D r . J. Phys. A 29(8): 1759–1766
Kuniba A., Ohta Y. and Suzuki J. (1995). Quantum Jacobi-Trudi and Giambelli Formulae for \({{\mathcal{U}}}_q(B_r^{(1)})\) from Analytic Bethe Ansatz. J. Phys. A 28(21): 6211–6226
Kirillov, A.N., Reshetikhin, N.: Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras. J. Sov. Math. 52(3), 3156–3164 (1990); translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160, Anal. Teor. Chisel i Teor. Funktsii. 8, 211–221, 301 (1987)
Kuniba A. and Suzuki S. (1995). Analytic Bethe Ansatz for fundamental representations and yangians. Commun. Math. Phys. 173: 225–264
Miki K. (2000). Representations of quantum toroidal algebra U q (sl n + 1,tor) (n ≥ 2). J. Math. Phys. 41(10): 7079–7098
Molev, A.: On Gelfand-Tsetlin bases for representations of classical Lie algebras. In: Formal power series and algebraic combinatorics (Moscow, 2000), Berlin:Springer 2000, pp. 300–308
Nakajima H. (2001). Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Amer. Math. Soc. 14(1): 145–238
Nakajima, H.: T-analogue of the q-characters of finite dimensional representations of quantum affine algebras. In: Physics and combinatorics, 2000 (Nagoya), River Edge, NJ:World Sci. Publishing 2001, pp. 196–219
Nakajima, H.: t–analogs of q–characters of quantum affine algebras of type A n , D n . In: Combinatorial and geometric representation theory (Seoul, 2001), Contemp. Math. 325, Providence, RI:Amer. Math. Soc. 2003, pp. 141–160
Nakajima H. (2004). Quiver Varieties and t-Analogs of q-Characters of Quantum Affine Algebras. Ann. of Math. 160: 1057–1097
Nakajima H. (2003). t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras. Represent. Theory 7: 259–274 (electronic)
Nazarov M. (2004). Representations of twisted Yangians associated with skew Young diagrams. Selecta Math. (N.S.) 10(1): 71–129
Nakai W. and Nakanishi T. (2006). Paths, tableaux and q-characters of quantum affine algebras: the C n case. J. Phys. A 39(9): 2083–2115
Nakai, W., Nakanishi, T.: Paths, tableaux descriptions of Jacubi-Trudi determinant associated with quantum affine algebra of type D n . J. Algebraic Combin. (to appear) math.QA/0603160, 2006
Nakai W. and Nakanishi T. (2007). Paths, tableaux descriptions of Jacubi-Trudi determinant associated with quantum affine algebra of type C n . SIGMA 3: 078
Nazarov M. and Tarasov V. (1998). Representations of Yangians with Gelfand-Zetlin bases. J. Reine Angew. Math. 496: 181–212
Varagnolo M. (2000). Quiver varieties and Yangians. Lett. Math. Phys. 53(4): 273–283
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Connes
Rights and permissions
About this article
Cite this article
Hernandez, D. On Minimal Affinizations of Representations of Quantum Groups. Commun. Math. Phys. 276, 221–259 (2007). https://doi.org/10.1007/s00220-007-0332-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-007-0332-1