Skip to main content
Log in

The Spectral Shift Function and Spectral Flow

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and DV with D having compact resolvent belonging to a general semifinite von Neumann algebra \({\mathcal{N}}\) and the perturbation \(V \in {\mathcal{N}}\) . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to \({\mathcal{N}}\) and V is any bounded self-adjoint operator in \({\mathcal{N}}\) . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non-commuting operators discovered in [3] which generalizes the double operator integral formalism of [8–10]. One surprising conclusion that follows from our results is that the Krein spectral shift function is computed, in certain circumstances, by the Atiyah-Patodi-Singer index theorem [2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asplund E. and Bungart L. (1966). A First Course in Integration. Holt, Rinehart and Winston, New York

    Google Scholar 

  2. Atiyah M., Patodi V. and Singer I.M. (1976). Spectral Asymmetry and Riemannian Geometry. III. Math. Proc. Camb. Phil. Soc. 79: 71–99

    Article  MATH  MathSciNet  Google Scholar 

  3. Azamov, N.A., Carey, A.L., Dodds, P.G., Sukochev, F.A.: Operator integrals, spectral shift and spectral flow. to appear in Canad. J. Math, available at http://arxiv.org/list/math/0703442, 2007

  4. Azamov N.A., Dodds P.G. and Sukochev F.A. (2006). The Krein spectral shift function in semi-finite von Neumann algebras. Integral Equations Operator Theory 55: 347–362

    Article  MATH  MathSciNet  Google Scholar 

  5. Benameur, M.-T., Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A., Wojciechowski, K.P.: An analytic approach to spectral flow in von Neumann algebras. In: Analysis, geometry and topology of elliptic operators, Hackensack, NJ: World Sci. Publ., 2006, pp. 297–352

  6. Birman M.Sh. and Pushnitski A.B. (1998). Spectral shift function, amazing and multifaceted. Dedicated to the memory of Mark Grigorievich Krein (1907–1989). Integral Equations Operator Theory 30: 191–199

    Article  MATH  MathSciNet  Google Scholar 

  7. Birman M.Sh. and Solomyak M.Z. (1975). Remarks on the spectral shift function. J. Soviet Math. 3: 408–419

    Article  MATH  Google Scholar 

  8. Birman, M.Sh., Solomyak, M.Z.: Double Stieltjes operator integrals. I. In: Problems of Mathematical Physics, No. 1, Spectral Theory and Wave Processes, Leningrad: Izdat. Leningrad. Univ., 1966, pp. 33–67 (Russian)

  9. Birman, M.Sh., Solomyak, M.Z.: Double Stieltjes operator integrals. II. In: Problems of Mathematical Physics, No. 2, Spectral Theory, Diffraction Problems, Leningrad: Izdat. Leningrad. Univ., 1967, pp. 26–60 (Russian)

  10. Birman, M.Sh., Solomyak, M.Z.: Double Stieltjes operator integrals. III, Leningrad: Izdat. Leningrad Univ., 1973, pp. 27–53 (Russian)

  11. Birman M.Sh. and Yafaev D.R. (1992). The spectral shift function, the work of M. G. Krein and its further development. Algebra i Analiz 4: 833–870

    MathSciNet  Google Scholar 

  12. Booβ-Bavnbek B., Lesch M. and Phillips J. (2005). Unbounded Fredholm operators and spectral flow. Canad. J. Math. 57: 225–250

    MathSciNet  Google Scholar 

  13. Bratteli O. and Robinson D. (1979). Operator Algebras and Quantum Statistical Mechanics I. Springer-Verlag, Berlin-Heidelberg-Newyork

    Google Scholar 

  14. Carey A.L., Hannabuss K.C., Mathai V. and McCann P. (1998). The quantum hall effect on the hyperbolic plane. Commun. Math. Phys 190: 629–673

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Carey A.L. and Phillips J. (1998). Unbounded Fredholm modules and spectral flow. Canad. J. Math. 50: 673–718

    MATH  MathSciNet  Google Scholar 

  16. Carey A.L. and Phillips J. (2004). Spectral flow in Fredholm modules, eta invariants and the JLO cocycle. K-Theory 31: 135–194

    Article  MATH  MathSciNet  Google Scholar 

  17. Carey A.L., Phillips J., Rennie A. and Sukochev F.A. (2006). The local index formula in semifi- nite von Neumann algebras I: spectral flow. Adv. in Math. 202: 451–516

    Article  MATH  MathSciNet  Google Scholar 

  18. Carey A.L., Phillips J., Rennie A. and Sukochev F.A. (2006). The local index formula in semifi- nite von Neumann algebras II: even case. Adv. in Math. 202: 517–554

    Article  MATH  MathSciNet  Google Scholar 

  19. Connes A. (1994). Noncommutative Geometry. Academic Press, San Diego

    MATH  Google Scholar 

  20. Connes A. and Moscovici H. (1995). The local index formula in noncommutative geometry. GAFA 5: 174–243

    Article  MATH  MathSciNet  Google Scholar 

  21. Daletskiĭ Yu.L. and Kreĭn S.G. (1956). Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations. Voronez̆. Gos. Univ., Trudy Sem. Funkcional. Anal. 1: 81–105 (Russian)

    Google Scholar 

  22. Fack T. and Kosaki H. (1986). Generalised s-numbers of τ-measurable operators. Pacific J. Math. 123: 269–300

    MATH  MathSciNet  Google Scholar 

  23. Gelfand I.M. and Shilov G.E. (1964). Generalized functions, Vol. 1. Academic Press, New York

    Google Scholar 

  24. Getzler E. (1993). The odd Chern character in cyclic homology and spectral flow. Topology 32: 489–507

    Article  MATH  MathSciNet  Google Scholar 

  25. Jacobs K. (1978). Measure and integral. Academic Press, New York-San Francisco-London

    MATH  Google Scholar 

  26. Kreĭn, M.G.: Some new studies in the theory of perturbations of self-adjoint operators. (Russian) First Math. Summer School (Kanev, 1963), Part I, Kiev: Naukova Dumka, 1964, pp. 103.187; English transl. in M.G. Kreĭn: Topics in differential and integral equations and operator theory, Basel: Birkhäuser, 1983, pp. 107–172

  27. de Pagter B. and Sukochev F.A. (2004). Differentiation of operator functions in noncommutative Lp-spaces. J. Funct. Anal. 212: 28–75

    Article  MATH  MathSciNet  Google Scholar 

  28. Peller, V.V.: Multiple operator integrals and higher operator derivatives. http://arxiv.org/list/math.SP/ 0505555, 2005

  29. Phillips J. and Raeburn I. (1994). An index theorem for Toeplitz operators with noncommutative symbol space. J. Funct. Anal. 120: 239–263

    Article  MATH  MathSciNet  Google Scholar 

  30. Phillips J. (1996). Self-adjoint Fredholm operators and spectral flow. Canad. Math. Bull. 39: 460–467

    MATH  MathSciNet  Google Scholar 

  31. Phillips J. (1997). Spectral flow in type I and type II factors - a new approach. Fields Inst. Comm. 17: 137–153

    Google Scholar 

  32. Simon, B.: Trace ideals and their applications. London Math. Society Lecture Note Series 35, Cambridge-London: Cambridge University Press, 1979

  33. Simon B. (1998). Spectral averaging and the Krein spectral shift. Proc. Amer. Math. Soc. 126: 1409–1413

    Article  MATH  MathSciNet  Google Scholar 

  34. Takesaki M. (2002). Theory of Operator Algebras. Vol. I. Springer-Verlag, Berlin Heidelberg-Newyork

    Google Scholar 

  35. Wahl, C.: Spectral flow as winding number and integral formulas. http://arxiv.org/list/math/0703287, 2007

  36. Wahl, C.: A new topology on the space of unbounded selfadjoint operators and the spectral flow. http://arxiv.org/list/math/0607783, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Carey.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azamov, N.A., Carey, A.L. & Sukochev, F.A. The Spectral Shift Function and Spectral Flow. Commun. Math. Phys. 276, 51–91 (2007). https://doi.org/10.1007/s00220-007-0329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0329-9

Keywords

Navigation