Skip to main content
Log in

Generalized Farey Trees, Transfer Operators and Phase Transitions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a family of Markov maps on the unit interval, interpolating between the tent map and the Farey map. The latter is not uniformly expanding. Each map being composed of two fractional linear transformations, the family generalizes many particular properties which for the case of the Farey map have been successfully exploited in number theory. We analyze the dynamics through the spectral properties of the generalized transfer operator. Application of the thermodynamic formalism to the family reveals first and second order phase transitions and unusual properties like positivity of the interaction function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baladi, V.: Positive Transfer Operators and Decay of Correlations. In: Advanced Series in Nonlinear Dynamics, Vol. 16, Singapore: World Scientific, 2000

  2. Contucci P. and Knauf A. (1997). The phase transition of the number-theoretical spin chain. Forum Math. 9: 547–767

    Article  MATH  MathSciNet  Google Scholar 

  3. Fiala J., Kleban P. and Özlük A. (2003). The Phase Transition in Statistical Models Defined on Farey Fractions. J. Stat. Phys. 110: 73–86

    Article  MATH  Google Scholar 

  4. Gallavotti, G., Martin-Löf, A., Miracle-Solé, S.: Some Problems Connected with the Description of Coexisting Phases at low Temperatures in the Ising Model. In: Statistical Mechanics and Mathematical Problems (Batelle, 1971), Lenard, A., ed., Lecture Notes in Physics 20, Berlin, Heidelberg, New York: Springer, 1973

  5. Giampieri M. and Isola S. (2005). A one-parameter family of analytic Markov maps with an intermittency transition. Disc. Cont. Dyn. Syst. 12: 115–136

    MATH  MathSciNet  Google Scholar 

  6. Glimm J. and Jaffe A. (1987). Quantum Physics. 2nd ed. Springer, New York

    Google Scholar 

  7. Graham R.L., Knuth D.E. and Patashnik O. (1990). Concrete Mathematics. Addison-Wesley, Reading MA

    Google Scholar 

  8. Guerra F. and Knauf A. (1998). Free Energy and Correlations of the Number-Theoretical Spin Chain. J. Math. Phys. 39: 3188–3202

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Gradshteyn I. and Ryzhik I. (1965). Table of integrals, series and products. Academic Press, New York

    Google Scholar 

  10. Hardy G.H. and Wright E.M. (1979). An introduction to the theory of numbers. Oxford Univ. Press, Oxford

    MATH  Google Scholar 

  11. Isola S. (2002). On the spectrum of Farey and Gauss maps. Nonlinearity 15: 1521–1539

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Kato T. (1995). Perturbation Theory for Linear Operators. Springer, Berlin

    MATH  Google Scholar 

  13. Kleban P. and Özlük A. (1999). A Farey fraction spin chain. Commun. Math. Phys. 203: 635–647

    Article  MATH  ADS  Google Scholar 

  14. Knauf A. (1999). Number theory, dynamical systems and statistical mechanics. Rev. Math. Phys. 11: 1027–1060

    Article  MATH  MathSciNet  Google Scholar 

  15. Knauf A. (1998). The number-theoretical spin chain and the Riemann zeros. Commun. Math. Phys. 196: 703–731

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Knauf A. (1993). On a ferromagnetic spin chain. Commun. Math. Phys. 153: 77–115

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Knauf A. (1994). On a Ferromagnetic Spin Chain. Part II: Thermodynamic Limit. J Math Phys 35: 228–236

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Lanford O.E. and Ruedin L. (1996). Statistical Mechanical Methods and Continued Fractions. Helv. Phys. Acta 69: 908–948

    MATH  MathSciNet  Google Scholar 

  19. Lewis, J., Zagier, D.: Period functions and the Selberg zeta function for the modular group. In: The Mathematical Beauty of Physics, Adv. Series in Math. Phys. 24, River Edge, NJ: World Sci. Publ., 1997, pp. 83–97

  20. Mayer, D.H.: Continued fractions and related transformations. In: Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Bedford, T., Keane, M., Series, C., eds., Oxford: Oxford University Press, 1991

  21. Minkowski, H.: Zur Geometrie der Zahlen. Gesammelte Abhandlungen, Vol. 2. Hilbert, D., ed., Leipzig: Teubner, 1911

  22. Newman Ch. (1975). Gaussian Correlation Inequalities for Ferromagnets. Z. Wahrscheinlichkeitstheorie verw. Gebiete 33: 75–93

    Article  MATH  Google Scholar 

  23. Oberhettinger F. (1972). Tables of Bessel Transforms. Springer-Verlag, Berlin-Heidelberg New York

    MATH  Google Scholar 

  24. Pólya, G.: Collected Papers, Vol. II: Locations of Zeros. Boas R.P. ed., Cambridge: M.I.T. Press, 1974

  25. Pomeau Y. and Manneville P. (1980). Intermittency transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74: 189–197

    Article  ADS  MathSciNet  Google Scholar 

  26. Prellberg T. (2003). Towards a complete determination of the spectrum of the transfer operator associated with intermittency. J. Phys. A. 36: 2455–2461

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Prellberg T. and Slawny J. (1992). Maps of Intervals with Indifferent Fixed Points: Thermodynamic Formalism and Phase Transitions. J. Stat. Phys. 66: 503–514

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Ruelle D. (1978). Thermodynamic Formalism. Addision-Wesley Publ. Co, Reading, MA

    MATH  Google Scholar 

  29. Ruelle D. (1988). Is Our Mathematics Natural? The Case of Equilibrium Statistical Mechanics. Bull. AMS 19: 259–268

    MATH  MathSciNet  Google Scholar 

  30. Rugh H.H. (1999). Intermittency and regularized Fredholm determinants. Invent. Math. 135: 1–24

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Simon B. (1993). The Statistical Mechanics of Lattice Gases. Vol. I. Princeton University Press, Princeton NJ

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Knauf.

Additional information

Communicated by J.L. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degli Esposti, M., Isola, S. & Knauf, A. Generalized Farey Trees, Transfer Operators and Phase Transitions. Commun. Math. Phys. 275, 297–329 (2007). https://doi.org/10.1007/s00220-007-0294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0294-3

Keywords

Navigation