Skip to main content

Advertisement

Log in

A Mathematical Theory for Vibrational Levels Associated with Hydrogen Bonds I: The Symmetric Case

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose an alternative to the usual time–independentBorn–Oppenheimer approximation that is specifically designed todescribe molecules with symmetrical Hydrogen bonds. In our approach,the masses of the Hydrogen nuclei are scaled differently from thoseof the heavier nuclei, and we employ a specialized form for theelectron energy level surface. Consequently, anharmonic effects playa role in the leading order calculations of vibrational levels.

Although we develop a general theory, our analysis is motivated byan examination of symmetric bihalide ions, such as FHF orClHCl . We describe our approach for the FHF ion in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axler S., Bourdon P. and Ramey W. (2001). Harmonic Function Theory. Springer, New York

    MATH  Google Scholar 

  2. Elghobashi, N., González, L.: A Theoretical Anharmonic Study of the Infrared Absorption Spectra of FHF , FDF , OHF , and ODF Ions. J. Chem. Phys. 124, article 174308 (2006)

  3. Hagedorn G.A. (1987). High Order Corrections to the Time-Independent Born-Oppenheimer Approximation I: Smooth Potentials. Ann. Inst. H. Poincaré Sect. A. 47: 1–16

    MATH  Google Scholar 

  4. Hagedorn, G.A., Joye, A.: A mathematical theory for vibrational levels associated with hydrogen bonds II: The Non–Symmetric Case. In preparation

  5. Hagedorn G.A. and Toloza J.H. (2005). Exponentially Accurate Quasimodes for the Time–Independent Born–Oppenheimer Approximation on a One–Dimensional Molecular System. Int. J. Quantum Chem. 105: 463–477

    Article  Google Scholar 

  6. Hislop P. (2000). Exponential decay of two-body eigenfunctions: A review. In: Mathematical Physics and Quantum Field Theory, Electron. J. Diff. Eqns., Conf. 4: 265–288

    Google Scholar 

  7. Hislop P. and Sigal M. (1996). Introduction to Spectral Theory with Applications to Schrodinger Operators Applied Mathematics Sciences, Volume 113. Springer, New York

    Google Scholar 

  8. Hörmander L. (1964). Linear Partial Differential Operators. Springer, Berlin-Göttingen-Heidelberg

    Google Scholar 

  9. Helffer B. and Nourrigat J. (1985). Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. Birkhäuser, Boston

    MATH  Google Scholar 

  10. Kato T. (1980). Perturbation Theory for Linear Operators. Springer, New York

    MATH  Google Scholar 

  11. Kawaguchi K. and Hirota E. (1987). Diode Laser Spectroscopy of the ν3 and ν2 Bands of FHF in 1300 cm−1 Region. J. Chem. Phys. 87: 6838–6841

    Article  ADS  Google Scholar 

  12. Mohamed A. and Nourrigat J. (1990). Encadrement du N(λ) pour un opérateur de Schrödinger avec un champ magnétique et un potentiel électrique. J. Math. Pures Appl. 70: 87–99

    Google Scholar 

  13. Reed M. and Simon B. (1972). Methods of Modern Mathematical Physics I, Functional Analysis. Academic Press, New York-London

    Google Scholar 

  14. Reed M. and Simon B. (1975). Methods of Modern Mathematical Physics II Fourier Analysis, Self-Adjointness. Academic Press, New York-London

    MATH  Google Scholar 

  15. Reed M. and Simon B. (1978). Methods of Modern Mathematical Physics IV Analysis of Operators. Academic Press, New York-London

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Hagedorn.

Additional information

Communicated by H. Spohn

Partially Supported by National Science Foundation Grants DMS–0303586 andDMS–0600944.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagedorn, G.A., Joye, A. A Mathematical Theory for Vibrational Levels Associated with Hydrogen Bonds I: The Symmetric Case. Commun. Math. Phys. 274, 691–715 (2007). https://doi.org/10.1007/s00220-007-0292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0292-5

Keywords

Navigation