Skip to main content
Log in

A Formal Model of Berezin-Toeplitz Quantization

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a new construction of symbols of the differential operators on the sections of a quantum line bundle L over a Kähler manifold M using the natural contravariant connection on L. These symbols are the functions on the tangent bundle TM polynomial on fibres. For high tensor powers of L, the asymptotics of the composition of these symbols leads to the star product of a deformation quantization with separation of variables on TM corresponding to some pseudo-Kähler structure on TM. Surprisingly, this star product is intimately related to the formal symplectic groupoid with separation of variables over M. We extend the star product on TM to generalized functions supported on the zero section of TM. The resulting algebra of generalized functions contains an idempotent element which can be thought of as a natural counterpart of the Bergman projection operator. Using this idempotent, we define an algebra of Toeplitz elements and show that it is naturally isomorphic to the algebra of Berezin-Toeplitz deformation quantization on M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayen F., Flato M., Fronsdal C., Lichnerowicz A. and Sternheimer D. (1978). Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Physics 111(1): 61–110

    Article  MATH  ADS  Google Scholar 

  2. Berezin F.A. (1974). Quantization. Math. USSR-Izv. 8: 1109–1165

    Article  MATH  Google Scholar 

  3. Berezin F.A. (1975). Quantization in complex symmetric spaces. Math. USSR-Izv. 9: 341–379

    Article  Google Scholar 

  4. Bertelson M., Cahen M. and Gutt S. (1997). Equivalence of star products. Geometry and physics. Class. Quantum Grav. 14(1A): A93–A107

    Article  MATH  ADS  Google Scholar 

  5. Bordemann M., Meinrenken E. and Schlichenmaier M. (1995). Toeplitz quantization of Kähler manifolds and gl(n), n → ∞ limits. Commun. Math. Phys. 165: 281–296

    Article  ADS  Google Scholar 

  6. Bordemann M. and Waldmann S. (1997). A Fedosov star product of the Wick type for Kähler manifolds. Lett. Math. Phys. 41(3): 243–253

    Article  MATH  Google Scholar 

  7. Cahen M., Gutt S. and Rawnsley J. (1990). Quantization of Kähler manifolds I: Geometric interpretation of Berezin’s quantization. JGP 7: 45–62

    MATH  ADS  Google Scholar 

  8. Cahen M., Gutt S. and Rawnsley J. (1993). Quantization of Kähler manifolds II. Trans. Amer. Math. Soc. 337: 73–98

    Article  MATH  Google Scholar 

  9. Connes A., Flato M. and Sternheimer D. (1992). Closed star-products and cyclic cohomology. Lett. Math. Phys. 24: 1–12

    Article  MATH  Google Scholar 

  10. De Wilde M. and Lecomte P.B.A. (1983). Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7(6): 487–496

    Article  MATH  Google Scholar 

  11. Deligne P. (1995). Déformations de l’algébre des fonctions d’une variété symplectique: comparison entre Fedosov et De Wilde, Lecomte. Selecta Math. (N.S.) 1(4): 667–697

    Article  MATH  Google Scholar 

  12. Fedosov B. (1994). A simple geometrical construction of deformation quantization. J. Diff. Geom. 40(2): 213–238

    MATH  Google Scholar 

  13. Fedosov, B.: Deformation quantization and index theory. Mathematical Topics, 9. Berlin: Akademie Verlag (1996)

  14. Guillemin V. (1995). Star products on pre-quantizable symplectic manifolds. Lett. Math. Phys. 35: 85–89

    Article  MATH  Google Scholar 

  15. Gutt S. and Rawnsley J. (2003). Natural star products on symplectic manifolds and quantum moment maps. Lett. Math. Phys. 66: 123–139

    Article  MATH  Google Scholar 

  16. Karabegov A. (1996). Deformation quantizations with separation of variables on a Kähler manifold. Commun. Math. Phys. 180: 745–755

    Article  MATH  ADS  Google Scholar 

  17. Karabegov A (1998). On the canonical normalization of a trace density of deformation quantization. Lett. Math. Phys. 45: 217–228

    Article  MATH  Google Scholar 

  18. Karabegov A. (1999). Pseudo-Kähler quantization on flag manifolds. Commun. Math. Phys. 200: 355–379

    Article  MATH  ADS  Google Scholar 

  19. Karabegov A. (2003). On the dequantization of Fedosov’s deformation quantization. Lett. Math. Phys. 65: 133–146

    Article  MATH  Google Scholar 

  20. Karabegov A. (2005). Formal symplectic groupoid of a deformation quantization. Commun. Math. Phys. 258: 223–256

    Article  MATH  ADS  Google Scholar 

  21. Karabegov A. and Schlichenmaier M. (2001). Identification of Berezin-Toeplitz deformation quantization. J. reine angew. Math. 540: 49–76

    MATH  Google Scholar 

  22. Kontsevich M. (2003). Deformation quantization of Poisson manifolds, I. Lett. Math. Phys. 66: 157–216

    Article  MATH  Google Scholar 

  23. Moreno C. (1986). *-products on some Kähler manifolds. Lett. Math. Phys. 11: 361–372

    Article  MATH  Google Scholar 

  24. Nest R. and Tsygan B. (1995). Algebraic index theorem. Commun. Math. Phys. 172(2): 223–262

    Article  MATH  ADS  Google Scholar 

  25. Neumaier N. (2003). Universality of Fedosov’s construction for star products of Wick type on Pseudo-Kähler manifolds. Rep. Math. Phys. 52: 43–80

    Article  MATH  Google Scholar 

  26. Omori H., Maeda Y. and Yoshioka A. (1991). Weyl manifolds and deformation quantization. Adv. Math. 85: 224–255

    Article  MATH  Google Scholar 

  27. Reshetikhin, N., Takhtajan, L.: Deformation quantization of Kähler manifolds. L. D. Faddeev’s Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Providence, RI: Amer. Math. Soc., 2000, pp. 257–276

  28. Schlichenmaier, M.: Berezin-Toeplitz quantization of compact Kähler manifolds. In: Quantization, Coherent States and Poisson Structures, Proc. XIVth Workshop on Geometric Methods in Physics (Bialowieza, Poland, 9–15 July 1995), A. Strasburger, S. T. Ali, J.-P. Antoine, J.-P. Gazeau, A. Odzijewicz (eds.) Warsaw:Polish Scientific Publisher PWN, 1998, pp. 101–115

  29. Xu P. (1998). Fedosov *-products and quantum momentum maps. Commun. Math. Phys. 197(1): 167–197

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Karabegov.

Additional information

Communicated by L. Takhtajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karabegov, A.V. A Formal Model of Berezin-Toeplitz Quantization. Commun. Math. Phys. 274, 659–689 (2007). https://doi.org/10.1007/s00220-007-0291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0291-6

Keywords

Navigation