Skip to main content
Log in

Destruction of Absolutely Continuous Spectrum by Perturbation Potentials of Bounded Variation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that absolutely continuous spectrum of one-dimensional Schrödinger operators may be destroyed by adding to them decaying perturbation potentials of bounded variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Avron J., Simon B. (1982). Almost periodic Schrödinger operators. I. Limit periodic potentials. Commun. Math. Phys. 82: 101–120

    Article  ADS  MathSciNet  Google Scholar 

  2. Breuer J., Last Y. (2007). Stability of spectral types for Jacobi matrices under decaying random perturbations. J. Funct. Anal. 245: 249–283

    Article  MATH  Google Scholar 

  3. Choi M.D., Elliott G.A., Yui N. (1990). Gauss polynomials and the rotation algebra. Invent. Math. 99: 225–246

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Christ M., Kiselev A. (2001). WKB and spectral analysis of one-dimensional Schrödinger operators with slowly varying potentials. Commun. Math. Phys. 218: 245–262

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Deift P., Killip R. (1999). On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials. Commun. Math. Phys. 203: 341–347

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Deift P., Simon B. (1983). Almost periodic Schrödinger operators, III. The absolutely continuous spectrum in one dimension. Commun. Math. Phys. 90: 389–411

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Dombrowski J., Nevai P. (1986). Orthogonal polynomials. measures and recurrence relations. SIAM. J. Math. Anal. 17: 752–759

    Article  MATH  MathSciNet  Google Scholar 

  8. Golinskii L., Nevai P. (2001). Szegő difference equations. transfer matrices and orthogonal polynomials on the unit circle. Commun. Math. Phys. 223: 223–259

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Kaluzhny, U., Last, Y.: Purely absolutely continuous spectrum for some random Jacobi matrices. In: Proceedings of “Probability and Mathematical Physics” a conference in honor of Stanislav Molchanov’s 65th birthday, to appear

  10. Killip R. (2002). Perturbations of one-dimensional Schrödinger operators preserving the absolutely continuous spectrum. Int. Math. Res. Not. 2002: 2029–2061

    Article  MATH  MathSciNet  Google Scholar 

  11. Kiselev A., Last Y., Simon B. (2003). Stability of singular spectral types under decaying perturbations. J. Funct. Anal. 198: 1–27

    Article  MATH  MathSciNet  Google Scholar 

  12. Kupin S. (2004). On a spectral property of Jacobi matrices. Proc. Amer. Math. Soc. 132: 1377–1383

    Article  MATH  MathSciNet  Google Scholar 

  13. Kupin S. (2005). Spectral properties of Jacobi matrices and sum rules of special form. J. Funct. Anal. 227: 1–29

    Article  MATH  MathSciNet  Google Scholar 

  14. Laptev A., Naboko S., Safronov O. (2003). On new relations between spectral properties of Jacobi matrices and their coefficients. Commun. Math. Phys. 241: 91–110

    MATH  ADS  MathSciNet  Google Scholar 

  15. Last Y. (1992). On the measure of gaps and spectra for discrete 1D Schrödinger operators. Commun. Math. Phys. 149: 347–360

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Last, Y.: Spectral theory of Sturm-Liouville operators on infinite intervals: a review of recent developments. In: Amrein, W.O., Hinz, A.M., Pearson, D.B. (eds.), Sturm-Liouville Theory: Past and Present, Basel: Birkhäuser, (2005), pp 99–120

  17. Last Y., Simon B. (1999). Eigenfunctions, transfer matrices and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135: 329–367

    Article  MATH  MathSciNet  Google Scholar 

  18. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, III. Scattering Theory, New York: Academic Press (1979)

  19. Simon B. (1996). Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators. Proc. Amer. Math. Soc. 124: 3361–3369

    Article  MathSciNet  Google Scholar 

  20. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory. AMS Colloquium Series, Providence, RI: American Mathematical Society, 2005

  21. Stolz G. (1994). Spectral theory for slowly oscillating potentials. I. Jacobi matrices. Manuscripta Math 84: 245–260

    Article  MATH  MathSciNet  Google Scholar 

  22. Stolz G. (1997). Spectral theory for slowly oscillating potentials. II. Schrödinger operators. Math. Nachr. 183: 275–294

    Article  MATH  MathSciNet  Google Scholar 

  23. Weidmann J. (1967). Zur Spektraltheorie von Sturm-Liouville-Operatoren. Math. Z. 98: 268–302

    Article  MATH  MathSciNet  Google Scholar 

  24. Zlatoš A. (2005). Sum rules for Jacobi matrices and divergent Lieb-Thirring sums. J. Funct. Anal. 225: 371–382

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Last.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Last, Y. Destruction of Absolutely Continuous Spectrum by Perturbation Potentials of Bounded Variation. Commun. Math. Phys. 274, 243–252 (2007). https://doi.org/10.1007/s00220-007-0264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0264-9

Keywords

Navigation