Skip to main content
Log in

An Algebra of Deformation Quantization for Star-Exponentials on Complex Symplectic Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The cotangent bundle T * X to a complex manifold X is classically endowed with the sheaf of k-algebras \({\mathcal{W}_{T*X}}\) of deformation quantization, where k := \({\mathcal{W}_{\{pt\}}}\) is a subfield of \({\mathbb{C}[[\hbar, \hbar^{-1}]}\) . Here, we construct a new sheaf of k-algebras \({\mathcal{W}^t_{T*X}}\) which contains \({\mathcal{W}_{T*X}}\) as a subalgebra and an extra central parameter t. We give the symbol calculus for this algebra and prove that quantized symplectic transformations operate on it. If P is any section of order zero of \({\mathcal{W}_{T*X}}\) , we show that \({{\rm exp}(t\hbar^{-1} P)}\) is well defined in \({\mathcal{W}^t_{T*X}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization I,II, Ann. Phys. 111:61–110, 111–151 (1978)

    Google Scholar 

  2. Dito J. (1990). Star product approach to quantum field theory: The free scalar field. Lett. Math. Phys. 20: 125–134

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Faddeev, L.D., Slanov, A.A.: Gauge Fields. Introduction to Quantum Theory. Reading MA: Benjamin Cummings Publishing, 1980

  4. Kashiwara M. (1996). Quantization of contact manifolds. Publ. RIMS, Kyoto Univ. 32: 1–5

    Article  MATH  MathSciNet  Google Scholar 

  5. Kashiwara, M.: D-modules and Microlocal Calculus, Translations of Mathematical Monographs 217, Providence, RI: American Math. Soc., 2003

  6. Kontsevich M. (2001). Deformation quantization of algebraic varieties, In: EuroConférence Moshé Flato, Part III (Dijon, 2000). Lett. Math. Phys. 56: 271–294

    Article  MATH  MathSciNet  Google Scholar 

  7. Kontsevich M. (2003). Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66: 157–216

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Polesello P., Schapira P. (2004). Stacks of quantization-deformation modules over complex symplectic manifolds. Int. Math. Res. Notices 49: 2637–2664

    Article  MathSciNet  Google Scholar 

  9. Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo-differential equations. In: Komatsu, H. (ed.), Hyperfunctions and pseudo-differential equations. Proceedings, Katata 1971. Lecture Notes in Math. 287. New-York: Springer-Verlag, 1973, pp. 265–529

  10. Schapira, P.: Microdifferential Systems in the Complex Domain. Grundlehren der Math. Wiss. 269. Berlin: Springer-Verlag, 1985

  11. Siu Y.T. (1976/77). Every Stein subvariety admits a Stein neighborhood. Invent. Math. 38: 89–100

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Dito.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dito, G., Schapira, P. An Algebra of Deformation Quantization for Star-Exponentials on Complex Symplectic Manifolds. Commun. Math. Phys. 273, 395–414 (2007). https://doi.org/10.1007/s00220-007-0250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0250-2

Keywords

Navigation