Skip to main content
Log in

Dynamics of the Quasi-Periodic Schrödinger Cocycle at the Lowest Energy in the Spectrum

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider the quasi-periodic Schrödinger cocycle over \(\mathbb{T}^d\) (d ≥ 1) and, in particular, its projectivization. In the regime of large coupling constants and Diophantine frequencies, we give an affirmative answer to a question posed by M. Herman [21, p.482] concerning the geometric structure of certain Strange Non-chaotic Attractors which appear in the projective dynamical system. We also show that for some phase, the lowest energy in the spectrum of the associated Schrödinger operator is an eigenvalue with an exponentially decaying eigenfunction. This generalizes [39] to the multi-frequency case (d > 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson P. (1958). Absence of diffusion in certain random lattices. Phys. Rev. 109: 1492–1501

    Article  ADS  Google Scholar 

  2. Avron J. and Simon B. (1983). Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math. J. 50(1): 369–391

    Article  MATH  MathSciNet  Google Scholar 

  3. Benedicks M. and Carleson L. (1991). The dynamics of the Hénon map. Ann. of Math. (2) 133(1): 73–169

    Article  MathSciNet  Google Scholar 

  4. Bjerklöv K. (2005). Positive Lyapunov exponent and minimality for a class of 1-d quasi-periodic Schrödinger equations. Ergodic Theory Dynam. Systems 25(4): 1015–1045

    Article  MATH  MathSciNet  Google Scholar 

  5. Bjerklöv K. (2006). Explicit examples of arbitrarily large analytic ergodic potentials with zero Lyapunov exponent. Geom. Funct. Anal. 16(6): 1183–1200

    Article  MATH  MathSciNet  Google Scholar 

  6. Bjerklöv K.: Positive Lypunov exponent and minimality for the continuous 1-d quasi-periodic Schrödinger equation with two basic frequencies. To appear in Ann. Henri Poincaré

  7. Bjerklöv K., Jäger T.H.: Strange non-chaotic attractors in quasi-periodically forced circle maps. In preparation.

  8. Bourgain J.: Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies, 158. Princeton, NJ: Princeton University Press 2005

  9. Bourgain J. (2005). Positivity and continuity of the Lyapounov exponent for shifts on \(\mathbb{T}^d\) with arbitrary frequency vector and real analytic potentialJ. Anal. Math. 96: 313–355

    Article  MATH  MathSciNet  Google Scholar 

  10. Bourgain J. and Goldstein M. (2000). On nonperturbative localization with quasi-periodic potential. Ann. of Math. (2) 152(3): 835–879

    Article  MATH  MathSciNet  Google Scholar 

  11. Chan, J.: Methods of variations of potentials of quasi-periodic Schrödinger equation. To appear in Geom. Funct. Anal.

  12. Delyon F. and Souillard B. (1983). The rotation number for finite difference operators and its properties. Commun. Math. Phys. 89(3): 415–426

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Eliasson L.H. (1997). Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math. 179(2): 153–196

    Article  MATH  MathSciNet  Google Scholar 

  14. Eliasson, L.H.: Ergodic skew-systems on \(\mathbb{T}^{d} \times {\rm SO}(3,\mathbb{R})\). Ergodic Theory Dynam. Systems 22(5), 1429–1449 (2002)

    Google Scholar 

  15. Eliasson L.H. (1992). Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146(3): 447–482

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Fröhlich J., Spencer T. and Wittwer P. (1990). Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys. 132(1): 5–25

    Article  MATH  ADS  Google Scholar 

  17. Gordon, A.: The point spectrum of the one-dimensional Schrödinger operator. (Russian) Usp. Mat. Nauk 31(1)(190), 257–258 (1976)

    Google Scholar 

  18. Grebogi C., Ott E., Pelikan S. and Yorke J. (1984). Strange attractors that are not chaotic. Phys. D 13(1–2): 261–268

    Article  MATH  MathSciNet  Google Scholar 

  19. Goldstein M. and Schlag W. (2001). Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann. of Math. (2) 154(1): 155–203

    Article  MATH  MathSciNet  Google Scholar 

  20. Goldstein, M., Schlag, W.: On resonances and the formation of gaps in the spectrum of quasi-periodic Schroedinger equations. Manuscript, available at http://arxive.org/list/math.DS/0511392, 2005

  21. Herman, M.: Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58(3), 453–502 (1983)

  22. Johnson R. (1986). Exponential dichotomy, rotation number and linear differential operators with bounded coefficients. J. Differ. Eqs. 61(1): 54–78

    Article  MATH  Google Scholar 

  23. Johnson R. (1978). Ergodic theory and linear differential. equations. J. Differential Equations 28(1): 23–34

    Article  MATH  MathSciNet  Google Scholar 

  24. Johnson R. (1982). The recurrent Hill’s equation. J. Differ. Eqs. 46(2): 165–193

    Article  MATH  Google Scholar 

  25. Johnson R. and Moser J. (1982). The rotation number for almost periodic potentials. Commun. Math. Phys. 84(3): 403–438

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Jorba, A., Núñez, C., Obaya, R., Tatjer, J.: Old and new results on snas on the real line. Preprint.

  27. Jäger, T.H.: On the structure of strange nonchaotic attractors in pinched skew products. To appear in Ergodic Theory Dynam. Systems, doi: 10.1017/S0143385706000745, 2006

  28. Jäger, T.H.: The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations. Manuscript, available at www.inv.uni-erlargen.de/njaeger/n preprints/sna.ps.2006

  29. Jäger, T.H.: Existence and structure of strange non-chaotic attractors. Ph.D Thesis, 2005, available at http://www.ini.uni-erlargen.de/njaeger

  30. Keller G. (1996). A note on strange nonchaotic attractors. Fund. Math. 151(2): 139–148

    MATH  MathSciNet  Google Scholar 

  31. Klein S. (2005). Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function. J. Funct. Anal. 218(2): 255–292

    Article  MATH  MathSciNet  Google Scholar 

  32. Millionščikov V.M. (1969). A proof of the existence of nonregular systems of linear differential equations with quasiperiodic coefficients. (Russian) Differencial’nye Uravnenija 5: 1979–1983

    MATH  Google Scholar 

  33. Oseledets V.I. (1968). A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems. (Russian) Trudy Moskov. Mat. Obšč. 19: 179–210

    Google Scholar 

  34. Prasad, A., Negi, S., Ramaswamy, R.: Strange nonchaotic attractors. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11

  35. Puig J. (2006). A nonperturbative Eliasson’s reducibility theorem. Nonlinearity 19(2): 355–376

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Ruelle D. (1979). Ergodic theory of differentiable dynamical systems. Inst. Hautes Études Sci. Publ. Math. No. 50: 27–58

    MATH  MathSciNet  Google Scholar 

  37. Simon B. (1982). Almost periodic Schrödinger operators: a review. Adv. in Appl. Math. 3(4): 463–490

    Article  MATH  MathSciNet  Google Scholar 

  38. Sinai Ya.G. (1987). Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Statist. Phys. 46(5-6): 861–909

    Article  MathSciNet  ADS  Google Scholar 

  39. Soshnikov A. (1993). Difference almost-periodic Schrödinger operators: corollaries of localization. Commun. Math. Phys. 153(3): 465–477

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Sorets E. and Spencer T. (1991). Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials. Commun. Math. Phys. 142(3): 543–566

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Vinograd R.E. (1975). On a problem of N. P. Erugin. (Russian) Differencial’nye Uravnenija 11(4): 632–638

    MATH  MathSciNet  Google Scholar 

  42. Young L.-S. (1997). Lyapunov exponents for some quasi-periodic cocycles. Ergodic Theory Dynam. Systems 17(2): 483–504

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Bjerklöv.

Additional information

Communicated by G. Gallavotti

Research partially supported by STINT (Institutional Grant 2002-2052), The Royal Swedish Academy of Sciences and SVeFUM

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjerklöv, K. Dynamics of the Quasi-Periodic Schrödinger Cocycle at the Lowest Energy in the Spectrum. Commun. Math. Phys. 272, 397–442 (2007). https://doi.org/10.1007/s00220-007-0238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0238-y

Keywords

Navigation