Skip to main content
Log in

On the Asymptotic Stability of Bound States in 2D Cubic Schrödinger Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the cubic nonlinear Schrödinger equation in two space dimensions with an attractive potential. We study the asymptotic stability of the nonlinear bound states, i.e. periodic in time localized in space solutions. Our result shows that all solutions with small, localized in space initial data, converge to the set of bound states. Therefore, the center manifold in this problem is a global attractor. The proof hinges on dispersive estimates that we obtain for the non-autonomous, non-Hamiltonian, linearized dynamics around the bound states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki H. and Lions P.-L. (1983). Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82: 313–345

    MATH  ADS  MathSciNet  Google Scholar 

  2. Buslaev V.S. and Perel’man G.S. (1992). Scattering for the nonlinear Schrödinger equation: states that are close to a soliton. Algebra i Analiz. 4: 63–102

    MATH  MathSciNet  Google Scholar 

  3. Buslaev, V.S., Perel’man, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations. In: Nonlinear evolution equations, Vol. 164 Amer. Math. Soc. Transl. Ser. 2, Providence, RI Amer. Math. Soc., 1995, pp. 75–98

  4. Buslaev V.S. and Sulem C. (2003). On asymptotic stability of solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 20: 419–475

    Article  MATH  MathSciNet  Google Scholar 

  5. Cazenave, T.: Semilinear Schrödinger equations. Vol. 10 of Courant Lecture Notes in Mathematics, New York: New York University Courant Institute of Mathematical Sciences, 2003

  6. Cuccagna S. (2001). Stabilization of solutions to nonlinear Schrödinger equations. Commun. Pure Appl. Math. 54: 1110–1145

    Article  MATH  MathSciNet  Google Scholar 

  7. Cuccagna S., Kirr E. and Pelinovsky D. (2006). Parametric resonance of ground states in the nonlinear Schrödinger equation. J. Differ. Eq. 220: 85–120

    Article  MATH  MathSciNet  Google Scholar 

  8. Dalfovo F., Giorgini S., Pitaevskii L. and Stringari S. (1999). Theory of bose-einstein condensation in trapped gases. Rev. Mod. Phys. 71: 463–512

    Article  ADS  Google Scholar 

  9. Grillakis M., Shatah J. and Strauss W. (1987). Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74: 160–197

    Article  MATH  MathSciNet  Google Scholar 

  10. Grillakis M., Shatah J. and Strauss W. (1990). Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94: 308–348

    Article  MATH  MathSciNet  Google Scholar 

  11. Gustafson S., Nakanishi K. and Tsai T.-P. (2004). Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves. Int. Math. Res. Not. 2004: 3559–3584

    Article  MATH  MathSciNet  Google Scholar 

  12. Kohler, W., Papanicolaou, G.C.: Wave propagation in a randomly inhomogenous ocean. In: Wave propagation and underwater acoustics (Workshop, Mystic, CT, 1974), Lecture Notes in Phys., Vol.,70 Berlin: Springer, 1977, pp. 153–223

  13. Krieger, J., Schlag, W.: Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Amer. Math. Soc. 19, 815–920 (2006) (electronic)

    Google Scholar 

  14. Lieb, E.H., Seiringer, R., Yngvason, J.:A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas. Commun. Math. Phys. 224, pp. 17–31 (2001) (Dedicated to Joel L. Lebowitz)

  15. Marcuse, D.:Theory of Dielectric Optical Waveguides. San Diego, CA: Academic Press, 1974

  16. Murata M. (1982). Asymptotic expansions in time for solutions of Schrödinger-type equations. J. Funct. Anal. 49: 10–56

    Article  MATH  MathSciNet  Google Scholar 

  17. Newell, A.C., Moloney, J.V.: Nonlinear optics. In:Advanced Topics in the Interdisciplinary Mathematical Sciences, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA: Addison-Westey, 1992

  18. Nirenberg, L.:Topics in nonlinear functional analysis. Vol. 6 of Courant Lecture Notes in Mathematics, New York: New York University Courant Institute of Mathematical Sciences 2001; Chapter 6 by E. Zehnder, Notes by R. A. Artino, Revised reprint of the 1974 original.

  19. Pillet C.-A. and Wayne C.E. (1997). Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations. J. Differ. Eq. 141: 310–326

    Article  MATH  MathSciNet  Google Scholar 

  20. Rodnianski I. and Schlag W. (2004). Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155: 451–513

    Article  MATH  MathSciNet  Google Scholar 

  21. Rose H.A. and Weinstein M.I. (1988). On the bound states of the nonlinear Schrödinger equation with a linear potential. Phys. D 30: 207–218

    Article  MathSciNet  Google Scholar 

  22. Schlag W. (2005). Dispersive estimates for Schrödinger operators in dimension two. Commun. Math. Phys. 257: 87–117

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Schlag, W.:Stable manifolds for an orbitally unstable nls. To appear in Annals of Math, available at http://www.math.uchicago.edu/ schlag/recent.html, 2004.

  24. Shatah J. and Strauss W. (1985). Instability of nonlinear bound states. Commun. Math. Phys. 100: 173–190

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Soffer A. and Weinstein M.I. (1990). Multichannel nonlinear scattering for nonintegrable equations. Commun. Math. Phys. 133: 119–146

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Soffer A. and Weinstein M.I. (1992). Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data. J. Differ. Eqs. 98: 376–390

    Article  MATH  MathSciNet  Google Scholar 

  27. Soffer, A., Weinstein, M.I.: Selection of the ground state for nonlinear Schroedinger equations. http://arXiv.org/abs/nlin/0308020, 2003, submitted to Reviews in Mathematical Physics

  28. Strauss W.A. (1977). Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55: 149–162

    Article  MATH  ADS  Google Scholar 

  29. Tsai T.-P. and Yau H.-T. (2002). Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions. Commun. Pure Appl. Math. 55: 153–216

    Article  MATH  MathSciNet  Google Scholar 

  30. Tsai T.-P. and Yau H.-T. (2002). Relaxation of excited states in nonlinear Schrödinger equations. Int. Math. Res. Not. 2002: 1629–1673

    Article  MATH  MathSciNet  Google Scholar 

  31. Tsai T.-P. and Yau H.-T. (2002). Stable directions for excited states of nonlinear Schrödinger equations. Commun. Partial Differ. Eq. 27: 2363–2402

    Article  MATH  MathSciNet  Google Scholar 

  32. Weder R. (2000). Center manifold for nonintegrable nonlinear Schrödinger equations on the line. Commun. Math. Phys. 215: 343–356

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Weinstein M.I. (1986). Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39: 51–67

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kirr.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirr, E., Zarnescu, A. On the Asymptotic Stability of Bound States in 2D Cubic Schrödinger Equation. Commun. Math. Phys. 272, 443–468 (2007). https://doi.org/10.1007/s00220-007-0233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0233-3

Keywords

Navigation