Abstract
We describe two simple obstructions to the existence of Ricci-flat Kähler cone metrics on isolated Gorenstein singularities or, equivalently, to the existence of Sasaki-Einstein metrics on the links of these singularities. In particular, this also leads to new obstructions for Kähler–Einstein metrics on Fano orbifolds. We present several families of hypersurface singularities that are obstructed, including 3-fold and 4-fold singularities of ADE type that have been studied previously in the physics literature. We show that the AdS/CFT dual of one obstruction is that the R–charge of a gauge invariant chiral primary operator violates the unitarity bound.
Similar content being viewed by others
References
Maldacena, J. M.: “The large N limit of superconformal field theories and supergravity.” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)]
Kehagias A. (1998). “New type IIB vacua and their F-theory interpretation”. Phys. Lett. B 435: 337
Klebanov I.R., Witten E. (1998). “Superconformal field theory on threebranes at a Calabi-Yau singularity”. Nucl. Phys. B 536: 199
Acharya B.S., Figueroa-O’Farrill J.M., Hull C.M., Spence B. (1999). “Branes at conical singularities and holography”. Adv. Theor. Math. Phys. 2: 1249
Morrison D.R., Plesser M.R. (1999). “Non-spherical horizons. I”. Adv. Theor. Math. Phys. 3: 1
Boyer, C.P., Galicki, K.: “Sasakian Geometry, Hypersurface Singularities, and Einstein Metrics.” Supplemento ai Rendiconti del Circolo Matematico di Palermo Serie II. Suppl 75, 57–87 (2005)
Matsushima Y. (1957). “Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kaehlérienne”. Nagoya Math. J. 11: 145–150
Futaki A. (1983). “An obstruction to the existence of Einstein Kähler metrics”. Invent. Math. 73: 437–443
Martelli, D., Sparks, J., Yau, S.-T.: “Sasaki–Einstein Manifolds and Volume Minimisation,” http://arxiv.org/list/hep-th/0603021
Martelli D., Sparks J. (2006). “Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals”. Commun. Math. Phys. 262: 51
Yau S.-T. (1993). “Open problems in Geometry”. Proc. Symp. Pure Math. 54: 1–28
Donaldson S.K. (1999). “Symmetric spaces, Kähler geometry and Hamiltonian dynamics”. Amer. Math. Soc. Transl. 196: 13–33
Martelli D., Sparks J., Yau S.-T. (2006). “The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds”. Commun. Math. Phys. 268: 39–65
Intriligator K., Wecht B. (2003). “The exact superconformal R-symmetry maximizes a”. Nucl. Phys. B 667: 183
Bishop, R.L., Crittenden, R.J.: “Geometry of manifolds.” New York: Academic Press, 1964
Besse, A.L.: “Einstein Manifolds.” Berlin-Heidelberg-New York: Springer–Verlag, 2nd edition, 1987
Lichnerowicz, A.: “Géometrie des groupes de transformations.” Paris: Dunod, 1958
Cachazo F., Fiol B., Intriligator K.A., Katz S., Vafa C. (2002). “A geometric unification of dualities”. Nucl. Phys. B 628: 3
Conti, D.: “Cohomogeneity one Einstein-Sasaki 5-manifolds.” http://arxiv.org/list/math.DG/0606323, 2006
Gukov, S., Vafa, C., Witten, E.: “CFT’s from Calabi-Yau four-folds.” Nucl. Phys. B 584, 69 (2000) [Erratum-ibid. B 608, 477 (2001)]
Obata M. (1962). “Certain conditions for a Riemannian manifold to be isometric to a sphere”. J. Math. Soc. Japan 14: 333–340
Minakshisundaram S., Pleijel A. (1949). “Some Properties of the Eigenfunctions of the Laplace–Operator on Riemannian Manifolds”. Can. J. Math. 1: 242–256
Kollár, J.: “Rational Curves on Algebraic Varieties.” Berlin-Heidelberg-New York: Springer–Verlag. Ergebnisse der Math. Vol 32, 1996
Hwang J.-M. (2003). “On the degrees of Fano four-folds of Picard number 1”. J. Reine Angew. Math. 556: 225–235
Gubser S., Nekrasov N., Shatashvili S. (1999). “Generalized conifolds and four dimensional N = 1 superconformal theories”. JHEP 9905: 003
Gubser S.S., Klebanov I.R., Polyakov A.M. (1998). “Gauge theory correlators from non-critical string theory”. Phys. Lett. B 428: 105
Witten E. (1998). “Anti-de Sitter space and holography”. Adv. Theor. Math. Phys. 2: 253
Klebanov I.R., Witten E. (1999). “AdS/CFT correspondence and symmetry breaking”. Nucl. Phys. B 556: 89
Balasubramanian V., Kraus P., Lawrence A.E. (1999). “Bulk vs. boundary dynamics in anti-de Sitter spacetime”. Phys. Rev. D 59: 046003
Ceresole A., Dall’Agata G., D’Auria R., Ferrara S. (2000). “Spectrum of type IIB supergravity on AdS(5) x T(11): Predictions on N = 1 SCFT’s”. Phys. Rev. D 61: 066001
Fabbri D., Fre P., Gualtieri L., Termonia P. (1999). “M-theory on AdS(4) x M(111): The complete Osp(2|4) x SU(3) x SU(2) spectrum from harmonic analysis”. Nucl. Phys. B 560: 617
Fabbri D., Fre’ P., Gualtieri L., Reina C., Tomasiello A., Zaffaroni A., Zampa A. (2000). “3D superconformal theories from Sasakian seven-manifolds: New nontrivial evidences for AdS(4)/CFT(3)”. Nucl. Phys. B 577: 547
Kim H.J., Romans L.J., Nieuwenhuizen P. (1985). “The Mass Spectrum Of Chiral N=2 D = 10 Supergravity On S 5”. Phys. Rev. D 32: 389
Castellani L., D’Auria R., Fre P., Pilch K., Nieuwenhuizen P. (1984). “The Bosonic Mass Formula For Freund-Rubin Solutions Of D = 11 Supergravity On General Coset Manifolds”. Class. Quant. Grav. 1: 339
D’Auria R., Fre P. (1985). “Universal Bose-Fermi Mass Relations In: Kaluza-Klein Supergravity And Harmonic Analysis On Coset Manifolds With Killing Spinors”. Annals Phys. 162: 372
Henningson M., Skenderis K. (1998). “The holographic Weyl anomaly”. JHEP 9807: 023
Gubser S.S. (1999). “Einstein manifolds and conformal field theories”. Phys. Rev. D 59: 025006
Gauntlett J.P., Martelli D., Sparks J., Waldram D. (2006). “Supersymmetric AdS(5) solutions of type IIB supergravity”. Class. Quant. Grav. 23: 4693
Randell, R.C.: “The homology of generalized Brieskorn manifolds.” Topology 14, no. 4, 347–355 (1975)
Bergman, A., Herzog, C.P.: “The Volume of some Non-spherical Horizons and the AdS/CFT Correspondence.” JHEP 0201, 030 (2002)
Nekrasov N., Shadchin S. (2004). “ABCD of instantons”. Commun. Math. Phys. 252: 359
Smith I., Thomas R.P. (2003). “Symplectic surgeries from singularities”. Turkish J. Math. 27: 231–250
Gauntlett J.P., Martelli D., Sparks J., Waldram D. (2004). “Sasaki-Einstein metrics on S 2 × S 3”. Adv. Theor. Math. Phys. 8: 711
Gauntlett J.P., Martelli D., Sparks J., Waldram D. (2004). “Supersymmetric AdS5 solutions of M-theory”. Class. Quant. Grav. 21: 4335
Dancer A.S., Strachan I.A.B. (1994). “Kähler–Einstein metrics with SU(2) action”. Math. Proc. Camb. Phil. Soc. 115: 513
Kollár J. (1989). “Flops”. Nagoya Math. J. 113: 15–36
Laufer, H.B.: “On \({\mathbb{CP}}^1\) as an exceptional set.” In: Recent developments in several complex variables, Tokyo/Princeton, NJ: Princeton University Press and University of Tokyo Press, 1981
Corrado R., Halmagyi N. (2005). “N = 1 field theories and fluxes in IIB string theory”. Phys. Rev. D 71: 046001
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G.W. Gibbons
Rights and permissions
About this article
Cite this article
Gauntlett, J.P., Martelli, D., Sparks, J. et al. Obstructions to the Existence of Sasaki–Einstein Metrics. Commun. Math. Phys. 273, 803–827 (2007). https://doi.org/10.1007/s00220-007-0213-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-007-0213-7