Skip to main content
Log in

Mean-Field- and Classical Limit of Many-Body Schrödinger Dynamics for Bosons

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a new proof of the convergence of the N −particle Schrödinger dynamics for bosons towards the dynamics generated by the Hartree equation in the mean-field limit. For a restricted class of two-body interactions, we obtain convergence estimates uniform in \({\hbar}\) , up to an exponentially small remainder. For \({\hbar = 0}\) , the classical dynamics in the mean-field limit is given by the Vlasov equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos C., Golse F. and Mauser N. (2000). Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 2: 275–293

    MathSciNet  Google Scholar 

  2. Bardos C., Erdös L., Golse F., Mauser N. and Yau H-T. (2002). Derivation of the Schrödinger-Poisson equation from the quantum N-body problem. C.R. Acad. Sci. Paris 334: 515–520

    MATH  Google Scholar 

  3. Bambusi D., Graffi S. and Paul T. (1999). Normal Forms Estimates and Quantization Formulae. Commun. Math. Phys. 207: 173–195

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Braun W. and Hepp K. (1977). The Vlasov Dynamics and Its Fluctuations in the 1/N Limit of Interacting Classical Particles. Commun. Math. Phys. 56: 101–113

    Article  ADS  MathSciNet  Google Scholar 

  5. Dobrushin R. L. (1979). Vlasov equations. Sov. J. Funct. An. 13: 115–119

    Google Scholar 

  6. Elgart A., Erdös L., Schlein B. and Yau H.-T. (2004). Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. 83: 1241–1273

    MATH  MathSciNet  Google Scholar 

  7. Erdos L. and Yau H.-T. (2001). Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5: 1169–2005

    MathSciNet  Google Scholar 

  8. Folland G. (1989). Harmonic Analysis in Phase Space. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  9. Graffi S., Martinez A. and Pulvirenti M. (2003). Mean field approximation of quantum systems and classical limit. Math. Meth. Models in Appl. Sci. 13: 55–63

    MathSciNet  Google Scholar 

  10. Ginibre J. and Velo G. (1980). On a class of nonlinear Schrödinger equations with nonlocal interaction. Math. Z. 170: 109–136

    Article  MATH  MathSciNet  Google Scholar 

  11. Hepp K. (1974). The classical limit for quantum mechanical correlation functions. Commun. Math. Phys 35: 265–267

    Article  ADS  MathSciNet  Google Scholar 

  12. Lions P. L. and Paul T. (1993). Sur les mesures de Wigner. Revista Matematica Ibero Americana 9: 553–618

    Google Scholar 

  13. Narnhofer H. and Sewell G. (1981). Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79: 9–24

    Article  ADS  MathSciNet  Google Scholar 

  14. Robert D. (1987). Autour de l’approximation semiclassique. Birkhäuser Verlag, Basel

    Google Scholar 

  15. Spohn H. (1980). Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53: 569–615

    Article  ADS  MathSciNet  Google Scholar 

  16. Spohn H. (1981). On the Vlasov hierarchy. Math. Meth. Models in Appl. Sci. 3: 445–455

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Graffi.

Additional information

Communicated by H.-T. Yau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröhlich, J., Graffi, S. & Schwarz, S. Mean-Field- and Classical Limit of Many-Body Schrödinger Dynamics for Bosons. Commun. Math. Phys. 271, 681–697 (2007). https://doi.org/10.1007/s00220-007-0207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0207-5

Keywords

Navigation