Abstract
We present a new proof of the convergence of the N −particle Schrödinger dynamics for bosons towards the dynamics generated by the Hartree equation in the mean-field limit. For a restricted class of two-body interactions, we obtain convergence estimates uniform in \({\hbar}\) , up to an exponentially small remainder. For \({\hbar = 0}\) , the classical dynamics in the mean-field limit is given by the Vlasov equation.
Similar content being viewed by others
References
Bardos C., Golse F. and Mauser N. (2000). Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 2: 275–293
Bardos C., Erdös L., Golse F., Mauser N. and Yau H-T. (2002). Derivation of the Schrödinger-Poisson equation from the quantum N-body problem. C.R. Acad. Sci. Paris 334: 515–520
Bambusi D., Graffi S. and Paul T. (1999). Normal Forms Estimates and Quantization Formulae. Commun. Math. Phys. 207: 173–195
Braun W. and Hepp K. (1977). The Vlasov Dynamics and Its Fluctuations in the 1/N Limit of Interacting Classical Particles. Commun. Math. Phys. 56: 101–113
Dobrushin R. L. (1979). Vlasov equations. Sov. J. Funct. An. 13: 115–119
Elgart A., Erdös L., Schlein B. and Yau H.-T. (2004). Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. 83: 1241–1273
Erdos L. and Yau H.-T. (2001). Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5: 1169–2005
Folland G. (1989). Harmonic Analysis in Phase Space. Princeton University Press, Princeton, NJ
Graffi S., Martinez A. and Pulvirenti M. (2003). Mean field approximation of quantum systems and classical limit. Math. Meth. Models in Appl. Sci. 13: 55–63
Ginibre J. and Velo G. (1980). On a class of nonlinear Schrödinger equations with nonlocal interaction. Math. Z. 170: 109–136
Hepp K. (1974). The classical limit for quantum mechanical correlation functions. Commun. Math. Phys 35: 265–267
Lions P. L. and Paul T. (1993). Sur les mesures de Wigner. Revista Matematica Ibero Americana 9: 553–618
Narnhofer H. and Sewell G. (1981). Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79: 9–24
Robert D. (1987). Autour de l’approximation semiclassique. Birkhäuser Verlag, Basel
Spohn H. (1980). Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53: 569–615
Spohn H. (1981). On the Vlasov hierarchy. Math. Meth. Models in Appl. Sci. 3: 445–455
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H.-T. Yau.
Rights and permissions
About this article
Cite this article
Fröhlich, J., Graffi, S. & Schwarz, S. Mean-Field- and Classical Limit of Many-Body Schrödinger Dynamics for Bosons. Commun. Math. Phys. 271, 681–697 (2007). https://doi.org/10.1007/s00220-007-0207-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-007-0207-5