Skip to main content
Log in

Lieb-Robinson Bounds and the Exponential Clustering Theorem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a Lieb-Robinson bound for the group velocity of a large class of discrete quantum systems which can be used to prove that a non-vanishing spectral gap implies exponential clustering in the ground state of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fredenhagen, K.: A Remark on the Cluster Theorem. Commun. Math. Phys. 97, 461–463 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Nachtergaele, B.: The spectral gap for some quantum spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565–606 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Dhar, D.: Lattices of effectively nonintegral dimensionality. J. Math. Phys. 18, 577–585 (1977)

    Article  ADS  Google Scholar 

  4. Tasaki, H.: Critical phenomena in fractal spin systems. J. Phys. A: Math. Gen. 20, 4521–4529 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  5. Koma, T., Tasaki, H.: Classical XY model in 1.99 dimensions. Phys. Rev. Lett. 74, 3916–3919 (1995)

    Google Scholar 

  6. Koma, T.: Spectral Gap and Decay of Correlations in U(1)-Symmetric Lattice Systems in Dimensions D<2. (http://arxiv.org/list/math-ph/0505022), 2005

  7. Albert, A., Barabási, A.-L.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hastings, M.B.: Mean-field and anomolous behavior on a small-world network. Phys. Rev. Lett. 91, 098701 (2003)

    Article  ADS  Google Scholar 

  9. Wreszinski, W.F.: Charges and Symmetries in Quantum Theories without Locality. Fortschr. Phys. 35, 379–413 (1987)

    MathSciNet  Google Scholar 

  10. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. (N.Y.) 16, 407–466 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hastings, M.B.: Lieb-Schultz-Mattis in Higher Dimensions. Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  12. Hastings, M.B.: Locality in Quantum and Markov Dynamics on Lattices and Networks. Phys. Rev. Lett. 93, 140402 (2004)

    Article  ADS  Google Scholar 

  13. Lieb, E.H., Robinson, D.W.: The Finite Group Velocity of Quantum Spin Systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1. 2nd edn., Berlin-Heidelberg-New York: Springer Verlag, 1987

  15. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2. 2nd edn., Berlin-Heiderberg-New York: Springer Verlag, 1997

  16. Simon, B.: The Statistical Mechanics of Lattice Gases, Volume I. Princeton, NJ: Princeton University Press, 1993

  17. Hastings, M.B., Koma, T.: Spectral Gap and Exponential Decay of Correlations. http://arxiv.org/list/math-ph/0507008, 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nachtergaele.

Additional information

Communicated by H. Spohn

Copyright © 2006 by the authors. This article may be reproduced in its entirety for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachtergaele, B., Sims, R. Lieb-Robinson Bounds and the Exponential Clustering Theorem. Commun. Math. Phys. 265, 119–130 (2006). https://doi.org/10.1007/s00220-006-1556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-1556-1

Keywords

Navigation