Abstract
We give a Lieb-Robinson bound for the group velocity of a large class of discrete quantum systems which can be used to prove that a non-vanishing spectral gap implies exponential clustering in the ground state of such systems.
Similar content being viewed by others
References
Fredenhagen, K.: A Remark on the Cluster Theorem. Commun. Math. Phys. 97, 461–463 (1985)
Nachtergaele, B.: The spectral gap for some quantum spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565–606 (1996)
Dhar, D.: Lattices of effectively nonintegral dimensionality. J. Math. Phys. 18, 577–585 (1977)
Tasaki, H.: Critical phenomena in fractal spin systems. J. Phys. A: Math. Gen. 20, 4521–4529 (1987)
Koma, T., Tasaki, H.: Classical XY model in 1.99 dimensions. Phys. Rev. Lett. 74, 3916–3919 (1995)
Koma, T.: Spectral Gap and Decay of Correlations in U(1)-Symmetric Lattice Systems in Dimensions D<2. (http://arxiv.org/list/math-ph/0505022), 2005
Albert, A., Barabási, A.-L.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74, 47–97 (2002)
Hastings, M.B.: Mean-field and anomolous behavior on a small-world network. Phys. Rev. Lett. 91, 098701 (2003)
Wreszinski, W.F.: Charges and Symmetries in Quantum Theories without Locality. Fortschr. Phys. 35, 379–413 (1987)
Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. (N.Y.) 16, 407–466 (1961)
Hastings, M.B.: Lieb-Schultz-Mattis in Higher Dimensions. Phys. Rev. B 69, 104431 (2004)
Hastings, M.B.: Locality in Quantum and Markov Dynamics on Lattices and Networks. Phys. Rev. Lett. 93, 140402 (2004)
Lieb, E.H., Robinson, D.W.: The Finite Group Velocity of Quantum Spin Systems. Commun. Math. Phys. 28, 251–257 (1972)
Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1. 2nd edn., Berlin-Heidelberg-New York: Springer Verlag, 1987
Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2. 2nd edn., Berlin-Heiderberg-New York: Springer Verlag, 1997
Simon, B.: The Statistical Mechanics of Lattice Gases, Volume I. Princeton, NJ: Princeton University Press, 1993
Hastings, M.B., Koma, T.: Spectral Gap and Exponential Decay of Correlations. http://arxiv.org/list/math-ph/0507008, 2005
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H. Spohn
Copyright © 2006 by the authors. This article may be reproduced in its entirety for non-commercial purposes.
Rights and permissions
About this article
Cite this article
Nachtergaele, B., Sims, R. Lieb-Robinson Bounds and the Exponential Clustering Theorem. Commun. Math. Phys. 265, 119–130 (2006). https://doi.org/10.1007/s00220-006-1556-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-006-1556-1