Skip to main content
Log in

Connecting Solutions of the Lorentz Force Equation do Exist

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 05 August 2006

Abstract

Recent results on the maximization of the charged-particle action in a globally hyperbolic spacetime are discussed and generalized. We focus on the maximization of over a given causal homotopy class of curves connecting two causally related events x 0x 1. Action is proved to admit a maximum on , and also one in the adherence of each timelike homotopy class C. Moreover, the maximum σ 0 on is timelike if contains a timelike curve (and the degree of differentiability of all the elements is at least C 2).

In particular, this last result yields a complete Avez-Seifert type solution to the problem of connectedness through trajectories of charged particles in a globally hyperbolic spacetime endowed with an exact electromagnetic field: fixed any charge-to-mass ratio q/m, any two chronologically related events x 0x 1 can be connected by means of a timelike solution of the Lorentz force equation corresponding to q/m. The accuracy of the approach is stressed by many examples, including an explicit counterexample (valid for all q/m≠0) in the non-exact case.

As a relevant previous step, new properties of the causal path space, causal homotopy classes and cut points on lightlike geodesics are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, O.: Topological quantization and cohomology. Commun. Math. Phys. 100, 279–309 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Antonacci, F., Giannoni, F., Magrone, P.: On the problem of the existence for connecting trajectories under the action of a gravitational and electromagnetic fields. Diff. Geom. Appl. 13, 1–17 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Avez, A.: Essais de géométrie Riemannienne hyperbolique globale. Application à la relativité générale. Ann. Inst. Fourier (Grenoble) 132, 105–190 (1963)

    MathSciNet  Google Scholar 

  4. Barros, M., Cabrerizo, J.L., Fernández, M., Romero, A.: The Gauss-Landau-Hall problem on Riemannian surfaces. J. Math. Phys. 46, 11295-1–11295-15 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bartolo, B.: Trajectories connecting two events of a Lorentzian manifold in the presence of a vector field. J. Differ. Eq. 153, 82–95 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bartolo, R., Sánchez, M.: Remarks on some variational problems on non-complete manifolds. Nonlinear Anal. 47, 2887–2892 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry. Marcel Dekker Inc., New York (1996)

  8. Benci, V., Fortunato, D.: A new variational principle for the fundamental equations of classical physics. Found. Phys. 28, 333–352 (1998)

    Article  MathSciNet  Google Scholar 

  9. Bernal, A.N., Sánchez, M.: On smooth Cauchy hypersurfaces, Geroch's splitting theorem. Commun. Math. Phys. 243, 461–470 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257(1), 43–50 (2005)

    Article  MathSciNet  Google Scholar 

  11. Caponio, E.: Timelike solutions to the Lorentz force equation in time-dependent electromagnetic and gravitational fields. J. Diff. Eq. 199, 115–142 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Caponio, E., Masiello, A.: Trajectories for relativistic particles under the action of an electromagnetic force in a stationary space-time. Nonlinear Anal. 50, 71–89 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Caponio, E., Masiello, A.: Trajectories of charged particles in a region of a stationary spacetime. Class. Quantum Grav. 19, 2229–2256 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Caponio, E., Masiello, A.: The Avez-Seifert theorem for the relativistic Lorentz force equation. J. Math. Phys. 45, 4134–4140 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Caponio, E., Masiello, A.: Causal properties of Kaluza-Klein metrics. Appl. Math. Lett. 17, 1371–1374 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Caponio, E., Masiello, A., Piccione, P.: Maslov index and Morse theory for the relativistic Lorentz force equation. Manus. Math. 113, 471–506 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Caponio, E., Minguzzi, E.: Solutions to the Lorentz force equation with fixed charge-to-mass ratio in globally hyperbolic spacetimes. J. Geom. Phys. 49, 176–186 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Galloway, G.J.: Closed timelike geodesics. Trans. Amer. Math. Soc. 285, 379–384 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

  20. Jackson, J.D.: Classical Electrodynamics. John Wiley & Sons, New York (1975)

  21. Kaluza, T.F.E.: Zum Unitätsproblem der Physik. Sitzungsberichte der Preubische Akademie der Wissenschaften zu Berlin, Physikalisch-Mathematische Klasse 1, pp. 966–972 (1921)

  22. Kerner, R.: Generalization of the Kaluza-Klein theory for an arbitrary non-abelian gauge group. Ann. Inst. H. Poincaré 9, 143–152 (1968)

    MathSciNet  Google Scholar 

  23. Kerner, R., Martin, J., Mignemi, S., van Holten, J.-W.: Geodesic deviation in Kaluza-Klein theories. Phys. Rev. D 63, 027502 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kovacs, D.: The geodesics equation in five-dimensional relativity theory of Kaluza-Klein. Gen. Relativ. Gravit. 16, 645–655 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kovner, I.: Fermat principle in arbitrary gravitational fields. Astrophys. J. 351, 114–120 (1990)

    Article  ADS  Google Scholar 

  26. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Reading, Addison-Wesley Publishing Company, MA (1962)

  27. Leibowitz, E., Rosen, N.: Five-dimensional relativity theory. Gen. Relativ. Gravit. 4, 449–474 (1973)

    Article  MathSciNet  Google Scholar 

  28. Lichnerowicz, A.: Théories relativistes de la gravitation et de l'électromagnetisme, Relativité Générale et théories unitaires. Masson, Paris (1955)

  29. Minguzzi, E.: On the existence of maximizing curves for the charged-particle action. Class. Quantum Grav. 20, 4169–4175 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Minguzzi, E.: Comment on ``The Avez-Seifert theorem for the relativistic Lorentz force equation" and other related works, Math-ph/0505006

  31. Mirenghi, E., Tucci, M.: Stationary Lorentz manifolds and vector fields: existence of periodic trajectories. Nonlinear Anal. 50, 763–786 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco, CA (1973)

  33. O'Neill, B.: Semi-Riemannian Geometry. Academic Press, San Diego, CA (1983)

  34. Penrose, R.: Techniques of Differential Topology in Relativity. CBSM-NSF Regional Conference Series in applied Mathematics. SIAM, Philadelphia (1972)

  35. Perlick, V.: On Fermat's principle in general relativity: I. The general case. Class. Quantum Grav. 7, 1319–1331 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Sachs, R.K., Wu, H.: General Relativity for Mathematicians. Springer, Berlin (1977)

  37. Sánchez, M.: Geodesic connectedness of semi-Riemannian manifolds. Nonlinear Anal. 47, 3085–3102 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sánchez, M.: On causality and closed geodesics of compact Lorentzian manifolds and static spacetimes (2005). Diff. Geom. Appl. 24, 21–32 (2006)

    Article  Google Scholar 

  39. Seifert, H.J.: Global connectivity by timelike geodesics. Z. Naturforsh. 22a, 1356–1360 (1967)

    MATH  MathSciNet  Google Scholar 

  40. Smith, J.W.: Fundamental groups on a Lorentz manifold. Amer. J. Math. 82, 873–890 (1967)

    Google Scholar 

  41. Uhlenbeck, K.: A Morse theory for geodesics on a Lorentz manifold. Topology 14, 69–90 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  42. Walschap, G.: Causality relations on a class of sparetimes. Gen. Red. Grow. 27, 721–733 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Minguzzi.

Additional information

Communicated by G.W. Gibbons

An erratum to this article is available at http://dx.doi.org/10.1007/s00220-006-0064-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minguzzi, E., Sánchez, M. Connecting Solutions of the Lorentz Force Equation do Exist. Commun. Math. Phys. 264, 349–370 (2006). https://doi.org/10.1007/s00220-006-1547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-1547-2

Keywords

Navigation