Skip to main content
Log in

Nonlinear Instability for the Navier-Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is proved, using a bootstrap argument, that linear instability implies nonlinear instability for the incompressible Navier-Stokes equations in L p for all p ∈ (1,∞) and any finite or infinite domain in any dimension n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos, C., Guo, Y., Strauss, W.: Stable and unstable ideal plane flows, Chinese Ann. Math. Ser. B 23(2), 149–164 (2002) Dedicated to the memory of Jacques-Louis Lions.

    Article  MathSciNet  Google Scholar 

  2. Calderón, C.P.: Existence of weak solutions for the Navier-Stokes equations with initial data in L p . Trans. Amer. Math. Soc. 318(1), 179–200 (1990)

    Article  MathSciNet  Google Scholar 

  3. Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations. Handbook of mathematical fluid dynamics. Vol. III, Amsterdam; North-Holland, pp. 161–244 (2004)

  4. Fabes, E. B., Jones, B. F., Rivière, N. M.: The initial value problem for the Navier-Stokes equations with data in L p . Arch. Rat. Mech. Anal. 45, 222–240 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  5. Friedlander, S., Strauss, W., Vishik, M.: Nonlinear instability in an ideal fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire 14(2), 187–209 (1997)

    Article  Google Scholar 

  6. Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in L r spaces. Math. Z. 178(3), 297–329 (1981)

    Article  MathSciNet  Google Scholar 

  7. Giga, Y.: The Stokes operator in L r spaces. Proc. Japan Acad. Ser. A Math. Sci. 57(2), 85–89 (1981)

    Article  MathSciNet  Google Scholar 

  8. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics 840, New York: Springer-Verlag, 1981

  9. Kato,T.: Strong L p -solutions of the Navier-Stokes equation in R m, with applications to weak solutions, Math. Z. 187(4), 471–480 (1984)

    Google Scholar 

  10. Kato,T., Fujita, H.: On the nonstationary Navier-Stokes system. Rend. Sem. Mat. Univ. Padova 32, 243–260 (1962)

    MATH  MathSciNet  Google Scholar 

  11. Lemarié-Rieusset, P.G.: Solutions faibles d'énergie infinie pour les équations de Navier-Stokes dans R 3. C. R. Acad. Sci. Paris Sér. I Math. 328(12), 1133–1138 (1999)

    Google Scholar 

  12. Leray, J.: Essai sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. no. 63, 193–248 (1934)

    MATH  MathSciNet  Google Scholar 

  13. Lin, Z.: Nonlinear instability of ideal plane flows. Int. Math. Res. Not. 41, 2147–2178 (2004)

    Article  MATH  Google Scholar 

  14. Mesalkin, L. D. Sinai, Ja. G.: Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid. J. Appl. Math. Mech. 25, 1700–1705 (1961)

    Article  MathSciNet  Google Scholar 

  15. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. New York, Springer-Verlag: 1983

  16. Sattinger, D.H.: The Mathematical problem of hydrodynamic stability. J. Math. Mech. 19(9), 797–817 (1970)

    MathSciNet  Google Scholar 

  17. Seeley, R.: Interpolation in L p with boundary conditions, Studia Math. 44, 47–60 (1972). Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity.

  18. Serrin, J.: On the stability of viscous fluid motions, Arch. Rat. Mech. Anal. 3, 1–13 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  19. Temam, R.: Some developments on Navier-Stokes equations in the second half of the 20th century. Development of mathematics 1950–2000, Basel, Birkhäuser: 2000, pp. 1049–1106

  20. Vishik, M. Friedlander, S.: Nonlinear instability in two dimensional ideal fluids: the case of a dominant eigenvalue. Comm. Math. Phys. 243(2), 261–273 (2003)

    Article  MathSciNet  Google Scholar 

  21. Yudovich, V. I.: The linearization method in hydrodynamical stability theory. Translations of Mathematical Monographs, Vol. 74, Providence, RI: Amer. Math. Soc. 1989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Shvydkoy.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedlander, S., Pavlović, N. & Shvydkoy, R. Nonlinear Instability for the Navier-Stokes Equations. Commun. Math. Phys. 264, 335–347 (2006). https://doi.org/10.1007/s00220-006-1526-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-1526-7

Keywords

Navigation