Skip to main content
Log in

On the Averages of Characteristic Polynomials From Classical Groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide an elementary and self-contained derivation of formulae for averages of products and ratios of characteristic polynomials of random matrices from classical groups using classical results due to Weyl and Littlewood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreev, A.V., Simons, B.D.: Correlators of spectral determinants in quantum chaos. Phys. Rev. Lett. 75(12), 2304–2307, (1995)

    Article  ADS  Google Scholar 

  2. Baik, J., Deift, P., Strahov, E.: Products and ratios of characteristic polynomials of random Hermitian matrices. J. Math. Phys. 44(8), 3657–3670, (2003)

    Article  MathSciNet  Google Scholar 

  3. Baik, J., Rains, E.M.: Algebraic aspects of increasing subsequences. Duke Math. J. 109(1), 1–65 (2001)

    Article  MathSciNet  Google Scholar 

  4. Baker, T.H., Forrester, P.J.: Finite-N fluctuation formulas for random matrices. J. Stat. Phys. 88, 1371–1386 (1997)

    ADS  MATH  Google Scholar 

  5. Basor, E.L., Forrester, P.J.: Formulas for the evaluation of Toeplitz determinants with rational generating functions. Math. Nachr. 170, 5–18 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras. Adv. in Math. 64(2), 118–175 (1987)

    Article  MathSciNet  Google Scholar 

  7. Berele, A., Remmel, J.B.: Hook flag characters and their combinatorics. J. Pure Appl. Algebra, 35, 225–245 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borodin, A., Strahov, E.: Averages of characteristic polynomials in random matrix theory. http:// arxiv.org/list/math-ph/0407065, 2004

  9. Brézin, E., Hikami, S.: Characteristic polynomials of random matrices. Commun. Math. Phys. 214(1), 111–135 (2000)

    Article  Google Scholar 

  10. Brézin, E., Hikami, S.: Characteristic polynomials of random matrices at edge singularities. Phys. Rev. E (3) 62(3, part A), 3558–3567 (2000)

  11. Brézin, E., Hikami, S.: Characteristic polynomials of real symmetric random matrices. Commun. Math. Phys. 223(2), 363–382 (2001)

    Google Scholar 

  12. Brézin, E., Hikami, S.: New correlation functions for random matrices and integrals over supergroups. J. Phys. A 36(3), 711–751 (2003)

    Article  MathSciNet  Google Scholar 

  13. Bump, D.: Lie groups. Graduate Texts in Mathematics. New York: Springer-Verlag, 225, (2004)

  14. Bump, D., Diaconis, P.: Toeplitz minors. J. Combin. Theory Ser. A 97(2), 252–271 (2002)

    Article  MathSciNet  Google Scholar 

  15. Conrey, B., Farmer, D., Zirnbauer, M.: Autocorrelation of ratios of characteristic polynomials. Preprint, 2004

  16. Conrey, J.B., Farmer, D.W., Keating, J.P., Rubinstein, M. O., Snaith, N.C.: Integral moments of zeta and l-functions. Proc. London Math. Soc. 91, 33–104 (2004)

    Article  MathSciNet  Google Scholar 

  17. Conrey, J.B., Farmer, D.W., Keating, J.P., Rubinstein, M.O., Snaith, N.C.: Autocorrelation of random matrix polynomials. Commun. Math. Phys. 237(3), 365–395 (2003)

    MathSciNet  Google Scholar 

  18. Conrey, J.B., Forrester, P., Snaith, N.C.: Averages of ratios of characteristic polynomials for compact classical groups. Int. Math. Res. Notices 7, 397–431 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Conrey, J.B., Ghosh, A.: A conjecture for the sixth power moment of the Riemann zeta-function. Int. Math. Res. Nortices 15, 775–780 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Conrey, J.B., Gonek, S.: High moments of the Riemann zeta-function. Duke. Math. J., 107, 577–604 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Day, K.M.: Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function. Trans. Amer. Math. Soc. 206, 224–245 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  22. Diaconis, P.: Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture. Bull. Amer. Math. Soc. (N.S.) 40(2), 155–178 (electronic), (2003)

    Article  MathSciNet  Google Scholar 

  23. Diaconis, P., Gamburd, A.: Random matrices, magic squares and matching polynomials. Electronic J. of Combinatorics 11(2), (2004)

  24. Diaconis, P., Shahshahani, M.: On the eigenvalues of random matrices. J. Appl. Probab. 31A, 49–62 (1994)

    Article  MathSciNet  Google Scholar 

  25. El Samra, N., King, R.C.: Dimensions of irreducible representations of the classical Lie groups. J. Phys. A, 12(12), 2317–2328 (1979)

    Article  Google Scholar 

  26. Forrester, P.J.: Log-gases and Random Matrices. http://www.ms.unimelb.edu.au/~matpjf/matpjf.html.

  27. Forrester, P.J., Keating, J.P.: Singularity dominated strong fluctuations for some random matrix averages. Commun. Math. Phys. 250(1), 119–131 (2004)

    MathSciNet  Google Scholar 

  28. Fyodorov, Y.V.: Negative moments of characteristic polynomials of random matrices: Ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation. Nuclear Phys. B 621(3), 643–674 (2002)

    Article  MathSciNet  Google Scholar 

  29. Fyodorov, Y.V., Keating, J.P.: Negative moments of characteristic polynomials of random GOE matrices and singularity-dominated strong fluctuations. J. Phys. A, 36(14), 4035–4046 (2003)

    Article  MathSciNet  Google Scholar 

  30. Fyodorov, Y.V., Strahov, E.: Characteristic polynomials of random Hermitian matrices and Duistermaat-Heckman localisation on non-compact Kähler manifolds. Nuclear Phys. B, 630(3), 453–491 (2002)

    MathSciNet  Google Scholar 

  31. Fyodorov, Y.V., Strahov, E.: On correlation functions of characteristic polynomials for chiral Gaussian unitary ensemble. Nuclear Phys. B 647(3), 581–597 (2002)

    Article  MathSciNet  Google Scholar 

  32. Fyodorov, Y.V., Strahov, E.: An exact formula for general spectral correlation function of random Hermitian matrices. J. Phys. A 36(12), 3203–3213 (2003)

    Article  MathSciNet  Google Scholar 

  33. Ladnor Geissinger: Hopf algebras of symmetric functions and class functions. In: Combinatoire et représentation du groupe symètrique (Actes Table Ronde C.N.R.S., Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), Lecture Notes in Math., Vol. 579. Berlin: Springer, 168–181, (1997)

  34. Howe, R.: θ-series and invariant theory. In: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1. Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I.: 1979, pp. 275–285

  35. Howe, R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313(2), 539–570 (1989)

    Article  MathSciNet  Google Scholar 

  36. Howe, R., Tan, E.-C., Willenbring, J.: Stable branching rules. Trans. Amer. Math. Soc. 357(4), (2004)

  37. Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In: The Schur lectures (1992) (Tel Aviv). Ramat Gan: Bar-Ilan Univ., Israel Math. Conf. Proc., 8, 1–182, (1995)

    MathSciNet  Google Scholar 

  38. Jimbo, M., Miwa, T.: On a duality of branching rules for affine Lie algebras. In: Algebraic groups and related topics (Kyoto/Nagoya, 1983). Adv. Stud. Pure Math., Amsterdam: North-Holland, 17–65 (1985)

  39. Keating, J.P., Snaith, N.C.: Random matrix theory and L-functions at s = 1 / 2. Commun. Math. Phys. 214(1), 91–110 (2000)

    Article  MathSciNet  Google Scholar 

  40. Keating, J.P., Snaith, N.C.: Random matrix theory and ζ( 1 / 2 + it ). Commun. Math. Phys. 214(1), 57–89, (2000)

    Article  MathSciNet  Google Scholar 

  41. King, R.: Branching rules for classical Lie groups using tensor and spinor methods. J. Phys. A 8, 429–449 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Krattenthaler, C.: Identities for classical group characters of nearly rectangular shape. J. Algebra 209, 1–64 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  43. Littlewood, D.E.: Some properties of s-functions. Proc. London Math. Soc. (2) 40, 49–70 (1936)

  44. Littlewood, D.E.: The Theory of Group Characters and Matrix Representations of Groups. New York: Oxford University Press, 1940

  45. Littlewood, D.E.: On invariant theory under restricted groups. Philos. Trans. Roy. Soc. London Ser. A. 239, 387–417 (1944)

    ADS  MATH  MathSciNet  Google Scholar 

  46. Macdonald, I.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. New York: The Clarendon Press Oxford University Press, Second edition, 1995. (With contributions by A. Zelevinsky, Oxford Science Publications)

  47. Mehta, M.L., Normand, J.-M.: Moments of the characteristic polynomial in the three ensembles of random matrices. J. Phys. A 34(22), 4627–4639, 2001

    Article  MathSciNet  Google Scholar 

  48. Okada, S.: Applications of minor summation formulas to rectangular-shaped representations of classical groups. J. Algebra, 205, 337-367 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  49. Rains, E.: Increasing subsequences and the classical groups. Electronic J. of Combinatorics 5, #R12 (1998)

  50. Schmidt, P., Spitzer, F.: The Toeplitz matrices of an arbitrary Laurent polynomial. Math. Scand., 8, 15–38 (1960)

    MATH  MathSciNet  Google Scholar 

  51. Stanley, R.P.: Enumerative Combinatorics, Vol. 2. Cambridge: Cambridge University Press, 1999

  52. Strahov, E., Fyodorov, Y.V.: Universal results for correlations of characteristic polynomials: Riemann-Hilbert approach. Commun Math. Phys. 241(2-3), 343–382 (2003)

    Google Scholar 

  53. Szegö, G.: Orthogonal Polynomials. Providence, RI: AMS, 1967

  54. Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton, NJ.: Princeton University Press, 1939

  55. Whippman, M.L.: Branching rules for simple Lie groups. J. Math. Phys. 6, 1534–1539 (1965)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. Zelevinsky, A.V.: Representations of finite classical groups, Volume 869 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1981

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Gamburd.

Additional information

Communicated by P. Sarnak

The first author was supported in part by the NSF grant FRG DMS-0354662.

The second author was supported in part by the NSF postdoctoral fellowship and by the NSF grant DMS-0501245.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bump, D., Gamburd, A. On the Averages of Characteristic Polynomials From Classical Groups. Commun. Math. Phys. 265, 227–274 (2006). https://doi.org/10.1007/s00220-006-1503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-1503-1

Keywords

Navigation