Abstract
We provide an elementary and self-contained derivation of formulae for averages of products and ratios of characteristic polynomials of random matrices from classical groups using classical results due to Weyl and Littlewood.
Similar content being viewed by others
References
Andreev, A.V., Simons, B.D.: Correlators of spectral determinants in quantum chaos. Phys. Rev. Lett. 75(12), 2304–2307, (1995)
Baik, J., Deift, P., Strahov, E.: Products and ratios of characteristic polynomials of random Hermitian matrices. J. Math. Phys. 44(8), 3657–3670, (2003)
Baik, J., Rains, E.M.: Algebraic aspects of increasing subsequences. Duke Math. J. 109(1), 1–65 (2001)
Baker, T.H., Forrester, P.J.: Finite-N fluctuation formulas for random matrices. J. Stat. Phys. 88, 1371–1386 (1997)
Basor, E.L., Forrester, P.J.: Formulas for the evaluation of Toeplitz determinants with rational generating functions. Math. Nachr. 170, 5–18 (1994)
Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras. Adv. in Math. 64(2), 118–175 (1987)
Berele, A., Remmel, J.B.: Hook flag characters and their combinatorics. J. Pure Appl. Algebra, 35, 225–245 (1985)
Borodin, A., Strahov, E.: Averages of characteristic polynomials in random matrix theory. http:// arxiv.org/list/math-ph/0407065, 2004
Brézin, E., Hikami, S.: Characteristic polynomials of random matrices. Commun. Math. Phys. 214(1), 111–135 (2000)
Brézin, E., Hikami, S.: Characteristic polynomials of random matrices at edge singularities. Phys. Rev. E (3) 62(3, part A), 3558–3567 (2000)
Brézin, E., Hikami, S.: Characteristic polynomials of real symmetric random matrices. Commun. Math. Phys. 223(2), 363–382 (2001)
Brézin, E., Hikami, S.: New correlation functions for random matrices and integrals over supergroups. J. Phys. A 36(3), 711–751 (2003)
Bump, D.: Lie groups. Graduate Texts in Mathematics. New York: Springer-Verlag, 225, (2004)
Bump, D., Diaconis, P.: Toeplitz minors. J. Combin. Theory Ser. A 97(2), 252–271 (2002)
Conrey, B., Farmer, D., Zirnbauer, M.: Autocorrelation of ratios of characteristic polynomials. Preprint, 2004
Conrey, J.B., Farmer, D.W., Keating, J.P., Rubinstein, M. O., Snaith, N.C.: Integral moments of zeta and l-functions. Proc. London Math. Soc. 91, 33–104 (2004)
Conrey, J.B., Farmer, D.W., Keating, J.P., Rubinstein, M.O., Snaith, N.C.: Autocorrelation of random matrix polynomials. Commun. Math. Phys. 237(3), 365–395 (2003)
Conrey, J.B., Forrester, P., Snaith, N.C.: Averages of ratios of characteristic polynomials for compact classical groups. Int. Math. Res. Notices 7, 397–431 (2005)
Conrey, J.B., Ghosh, A.: A conjecture for the sixth power moment of the Riemann zeta-function. Int. Math. Res. Nortices 15, 775–780 (1998)
Conrey, J.B., Gonek, S.: High moments of the Riemann zeta-function. Duke. Math. J., 107, 577–604 (2001)
Day, K.M.: Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function. Trans. Amer. Math. Soc. 206, 224–245 (1975)
Diaconis, P.: Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture. Bull. Amer. Math. Soc. (N.S.) 40(2), 155–178 (electronic), (2003)
Diaconis, P., Gamburd, A.: Random matrices, magic squares and matching polynomials. Electronic J. of Combinatorics 11(2), (2004)
Diaconis, P., Shahshahani, M.: On the eigenvalues of random matrices. J. Appl. Probab. 31A, 49–62 (1994)
El Samra, N., King, R.C.: Dimensions of irreducible representations of the classical Lie groups. J. Phys. A, 12(12), 2317–2328 (1979)
Forrester, P.J.: Log-gases and Random Matrices. http://www.ms.unimelb.edu.au/~matpjf/matpjf.html.
Forrester, P.J., Keating, J.P.: Singularity dominated strong fluctuations for some random matrix averages. Commun. Math. Phys. 250(1), 119–131 (2004)
Fyodorov, Y.V.: Negative moments of characteristic polynomials of random matrices: Ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation. Nuclear Phys. B 621(3), 643–674 (2002)
Fyodorov, Y.V., Keating, J.P.: Negative moments of characteristic polynomials of random GOE matrices and singularity-dominated strong fluctuations. J. Phys. A, 36(14), 4035–4046 (2003)
Fyodorov, Y.V., Strahov, E.: Characteristic polynomials of random Hermitian matrices and Duistermaat-Heckman localisation on non-compact Kähler manifolds. Nuclear Phys. B, 630(3), 453–491 (2002)
Fyodorov, Y.V., Strahov, E.: On correlation functions of characteristic polynomials for chiral Gaussian unitary ensemble. Nuclear Phys. B 647(3), 581–597 (2002)
Fyodorov, Y.V., Strahov, E.: An exact formula for general spectral correlation function of random Hermitian matrices. J. Phys. A 36(12), 3203–3213 (2003)
Ladnor Geissinger: Hopf algebras of symmetric functions and class functions. In: Combinatoire et représentation du groupe symètrique (Actes Table Ronde C.N.R.S., Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), Lecture Notes in Math., Vol. 579. Berlin: Springer, 168–181, (1997)
Howe, R.: θ-series and invariant theory. In: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1. Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I.: 1979, pp. 275–285
Howe, R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313(2), 539–570 (1989)
Howe, R., Tan, E.-C., Willenbring, J.: Stable branching rules. Trans. Amer. Math. Soc. 357(4), (2004)
Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In: The Schur lectures (1992) (Tel Aviv). Ramat Gan: Bar-Ilan Univ., Israel Math. Conf. Proc., 8, 1–182, (1995)
Jimbo, M., Miwa, T.: On a duality of branching rules for affine Lie algebras. In: Algebraic groups and related topics (Kyoto/Nagoya, 1983). Adv. Stud. Pure Math., Amsterdam: North-Holland, 17–65 (1985)
Keating, J.P., Snaith, N.C.: Random matrix theory and L-functions at s = 1 / 2. Commun. Math. Phys. 214(1), 91–110 (2000)
Keating, J.P., Snaith, N.C.: Random matrix theory and ζ( 1 / 2 + it ). Commun. Math. Phys. 214(1), 57–89, (2000)
King, R.: Branching rules for classical Lie groups using tensor and spinor methods. J. Phys. A 8, 429–449 (1975)
Krattenthaler, C.: Identities for classical group characters of nearly rectangular shape. J. Algebra 209, 1–64 (1998)
Littlewood, D.E.: Some properties of s-functions. Proc. London Math. Soc. (2) 40, 49–70 (1936)
Littlewood, D.E.: The Theory of Group Characters and Matrix Representations of Groups. New York: Oxford University Press, 1940
Littlewood, D.E.: On invariant theory under restricted groups. Philos. Trans. Roy. Soc. London Ser. A. 239, 387–417 (1944)
Macdonald, I.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. New York: The Clarendon Press Oxford University Press, Second edition, 1995. (With contributions by A. Zelevinsky, Oxford Science Publications)
Mehta, M.L., Normand, J.-M.: Moments of the characteristic polynomial in the three ensembles of random matrices. J. Phys. A 34(22), 4627–4639, 2001
Okada, S.: Applications of minor summation formulas to rectangular-shaped representations of classical groups. J. Algebra, 205, 337-367 (1998)
Rains, E.: Increasing subsequences and the classical groups. Electronic J. of Combinatorics 5, #R12 (1998)
Schmidt, P., Spitzer, F.: The Toeplitz matrices of an arbitrary Laurent polynomial. Math. Scand., 8, 15–38 (1960)
Stanley, R.P.: Enumerative Combinatorics, Vol. 2. Cambridge: Cambridge University Press, 1999
Strahov, E., Fyodorov, Y.V.: Universal results for correlations of characteristic polynomials: Riemann-Hilbert approach. Commun Math. Phys. 241(2-3), 343–382 (2003)
Szegö, G.: Orthogonal Polynomials. Providence, RI: AMS, 1967
Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton, NJ.: Princeton University Press, 1939
Whippman, M.L.: Branching rules for simple Lie groups. J. Math. Phys. 6, 1534–1539 (1965)
Zelevinsky, A.V.: Representations of finite classical groups, Volume 869 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1981
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Sarnak
The first author was supported in part by the NSF grant FRG DMS-0354662.
The second author was supported in part by the NSF postdoctoral fellowship and by the NSF grant DMS-0501245.
Rights and permissions
About this article
Cite this article
Bump, D., Gamburd, A. On the Averages of Characteristic Polynomials From Classical Groups. Commun. Math. Phys. 265, 227–274 (2006). https://doi.org/10.1007/s00220-006-1503-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-006-1503-1