Abstract
We introduce the notion of Poisson quasi-Nijenhuis manifolds generalizing Poisson-Nijenhuis manifolds of Magri-Morosi. We also investigate the integration problem of Poisson quasi-Nijenhuis manifolds. In particular, we prove that, under some topological assumption, Poisson (quasi)-Nijenhuis manifolds are in one-one correspondence with symplectic (quasi)-Nijenhuis groupoids. As an application, we study generalized complex structures in terms of Poisson quasi-Nijenhuis manifolds. We prove that a generalized complex manifold corresponds to a special class of Poisson quasi-Nijenhuis structures. As a consequence, we show that a generalized complex structure integrates to a symplectic quasi-Nijenhuis groupoid, recovering a theorem of Crainic.
Similar content being viewed by others
References
Bursztyn H., Crainic M., Weinstein A. and Zhu C. (2004). Integration of twisted Dirac brackets. Duke Math. J. 123(3): 549–607
Coste, A., Dazord, P., Weinstein, A.: Groupoïdes symplectiques. Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, Publ. Dép. Math. Nouvelle Sér. A, 87, Lyon: Univ Claude-Bernard, pp. i–ii, 1–62 (1987)
Courant T.J. (1990). Dirac manifolds. Trans. Amer. Math. Soc. 319(2): 631–661
Crainic, M.: Generalized complex structures and Lie brackets. http://arxiv.org/list/math.DG/0412097, 2004
Crainic M. and Fernandes R.L. (2003). Integrability of Lie brackets. Ann. of Math. (2) 157(2): 575–620
Crainic M. and Fernandes R.L. (2004). Integrability of Poisson brackets. J Differ Geom. 66(1): 71–137
Gualtieri, M.: Generalized complex geometry. http://arxiv.org/list/math.DG/0401221, 2004
Hitchin N. (2003). Generalized Calabi-Yau manifolds. Q. J. Math. 54(3): 281–308
Iglesias, D., Laurent-Gengoux, C., Xu, P.: Universal lifting theorem and quasi-Poisson groupoids. http://arxiv.org/list/math.DG/0507396, 2005
Kosmann-Schwarzbach Y. (1995). Exact Gerstenhaber algebras and Lie bialgebroids. Acta Appl. Math. 41(1-3): 153–165
Kosmann-Schwarzbach Y. (1996). The Lie bialgebroid of a Poisson-Nijenhuis manifold. Lett. Math. Phys. 38(4): 421–428
Kosmann-Schwarzbach Y. and Magri F. (1990). Poisson-Nijenhuis structures. Ann. Inst. H. Poincaré Phys. Théor. 53(1): 35–81
Liu Z.-J., Weinstein A. and Xu P. (1997). Manin triples for Lie bialgebroids. J. Differ. Geom. 45(3): 547–574
Mackenzie K.C.H. and Xu P. (1994). Lie bialgebroids and Poisson groupoids. Duke Math. J. 73(2): 415–452
Mackenzie K.C.H. and Xu P. (2000). Integration of Lie bialgebroids. Topology 39(3): 445–467
Magri, F., Morosi, C.: On the reduction theory of the Nijenhuis operators and its applications to Gel’ prime fand-Dikiĭ equations. Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, Vol. II (Torino, 1982) Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117, pp. 599–626 (1983)
Magri, F., Morosi, C.: Old and new results on recursion operators: an algebraic approach to KP equation. Topics in soliton theory and exactly solvable nonlinear equations (Oberwolfach, 1986), Singapore: World Sci. Publishing, pp. 78–96 (1987)
Magri F., Morosi C. and Ragnisco O. (1985). Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications. Commun. Math. Phys. 99(1): 115–140
Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds. http:// arxiv.org/list/math.DG/9910078, 1999
Roytenberg D. (2002). Quasi-Lie bialgebroids and twisted Poisson manifolds. Lett. Math. Phys. 61(2): 123–137
Vaisman I. (1996). Complementary 2-forms of Poisson structures. Compositio Math. 101(1): 55–75
Weinstein A. (1987). Symplectic groupoids and Poisson manifolds. Bull. Amer. Math. Soc. (N.S.) 16(1): 101–104
Xu P. (1999). Gerstenhaber algebras and BV-algebras in Poisson geometry. Commun. Math. Phys. 200(3): 545–560
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Francqui fellow of the Belgian American Educational Foundation.
Research supported by NSF grant DMS03-06665 and NSA grant 03G-142.
Rights and permissions
About this article
Cite this article
Stiénon, M., Xu, P. Poisson Quasi-Nijenhuis Manifolds. Commun. Math. Phys. 270, 709–725 (2007). https://doi.org/10.1007/s00220-006-0168-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-006-0168-0