Skip to main content
Log in

Poisson Quasi-Nijenhuis Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce the notion of Poisson quasi-Nijenhuis manifolds generalizing Poisson-Nijenhuis manifolds of Magri-Morosi. We also investigate the integration problem of Poisson quasi-Nijenhuis manifolds. In particular, we prove that, under some topological assumption, Poisson (quasi)-Nijenhuis manifolds are in one-one correspondence with symplectic (quasi)-Nijenhuis groupoids. As an application, we study generalized complex structures in terms of Poisson quasi-Nijenhuis manifolds. We prove that a generalized complex manifold corresponds to a special class of Poisson quasi-Nijenhuis structures. As a consequence, we show that a generalized complex structure integrates to a symplectic quasi-Nijenhuis groupoid, recovering a theorem of Crainic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bursztyn H., Crainic M., Weinstein A. and Zhu C. (2004). Integration of twisted Dirac brackets. Duke Math. J. 123(3): 549–607

    Article  MathSciNet  MATH  Google Scholar 

  2. Coste, A., Dazord, P., Weinstein, A.: Groupoïdes symplectiques. Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, Publ. Dép. Math. Nouvelle Sér. A, 87, Lyon: Univ Claude-Bernard, pp. i–ii, 1–62 (1987)

  3. Courant T.J. (1990). Dirac manifolds. Trans. Amer. Math. Soc. 319(2): 631–661

    Article  MathSciNet  MATH  Google Scholar 

  4. Crainic, M.: Generalized complex structures and Lie brackets. http://arxiv.org/list/math.DG/0412097, 2004

  5. Crainic M. and Fernandes R.L. (2003). Integrability of Lie brackets. Ann. of Math. (2) 157(2): 575–620

    Article  MathSciNet  MATH  Google Scholar 

  6. Crainic M. and Fernandes R.L. (2004). Integrability of Poisson brackets. J Differ Geom. 66(1): 71–137

    MathSciNet  MATH  Google Scholar 

  7. Gualtieri, M.: Generalized complex geometry. http://arxiv.org/list/math.DG/0401221, 2004

  8. Hitchin N. (2003). Generalized Calabi-Yau manifolds. Q. J. Math. 54(3): 281–308

    Article  MathSciNet  MATH  Google Scholar 

  9. Iglesias, D., Laurent-Gengoux, C., Xu, P.: Universal lifting theorem and quasi-Poisson groupoids. http://arxiv.org/list/math.DG/0507396, 2005

  10. Kosmann-Schwarzbach Y. (1995). Exact Gerstenhaber algebras and Lie bialgebroids. Acta Appl. Math. 41(1-3): 153–165

    Article  MathSciNet  MATH  Google Scholar 

  11. Kosmann-Schwarzbach Y. (1996). The Lie bialgebroid of a Poisson-Nijenhuis manifold. Lett. Math. Phys. 38(4): 421–428

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Kosmann-Schwarzbach Y. and Magri F. (1990). Poisson-Nijenhuis structures. Ann. Inst. H. Poincaré Phys. Théor. 53(1): 35–81

    MathSciNet  MATH  Google Scholar 

  13. Liu Z.-J., Weinstein A. and Xu P. (1997). Manin triples for Lie bialgebroids. J. Differ. Geom. 45(3): 547–574

    MathSciNet  Google Scholar 

  14. Mackenzie K.C.H. and Xu P. (1994). Lie bialgebroids and Poisson groupoids. Duke Math. J. 73(2): 415–452

    Article  MathSciNet  MATH  Google Scholar 

  15. Mackenzie K.C.H. and Xu P. (2000). Integration of Lie bialgebroids. Topology 39(3): 445–467

    Article  MathSciNet  MATH  Google Scholar 

  16. Magri, F., Morosi, C.: On the reduction theory of the Nijenhuis operators and its applications to Gel’ prime fand-Dikiĭ equations. Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, Vol. II (Torino, 1982) Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117, pp. 599–626 (1983)

  17. Magri, F., Morosi, C.: Old and new results on recursion operators: an algebraic approach to KP equation. Topics in soliton theory and exactly solvable nonlinear equations (Oberwolfach, 1986), Singapore: World Sci. Publishing, pp. 78–96 (1987)

  18. Magri F., Morosi C. and Ragnisco O. (1985). Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications. Commun. Math. Phys. 99(1): 115–140

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds. http:// arxiv.org/list/math.DG/9910078, 1999

  20. Roytenberg D. (2002). Quasi-Lie bialgebroids and twisted Poisson manifolds. Lett. Math. Phys. 61(2): 123–137

    Article  MathSciNet  MATH  Google Scholar 

  21. Vaisman I. (1996). Complementary 2-forms of Poisson structures. Compositio Math. 101(1): 55–75

    MathSciNet  MATH  Google Scholar 

  22. Weinstein A. (1987). Symplectic groupoids and Poisson manifolds. Bull. Amer. Math. Soc. (N.S.) 16(1): 101–104

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu P. (1999). Gerstenhaber algebras and BV-algebras in Poisson geometry. Commun. Math. Phys. 200(3): 545–560

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu.

Additional information

Communicated by Y. Kawahigashi

Francqui fellow of the Belgian American Educational Foundation.

Research supported by NSF grant DMS03-06665 and NSA grant 03G-142.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiénon, M., Xu, P. Poisson Quasi-Nijenhuis Manifolds. Commun. Math. Phys. 270, 709–725 (2007). https://doi.org/10.1007/s00220-006-0168-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0168-0

Keywords

Navigation