Skip to main content
Log in

Quantum Field Theory on Curved Backgrounds. I. The Euclidean Functional Integral

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a mathematical construction of Euclidean quantum field theory on certain curved backgrounds. We focus on generalizing Osterwalder Schrader quantization, as these methods have proved useful to establish estimates for interacting fields on flat space-times. In this picture, a static Killing vector generates translations in Euclidean time, and the role of physical positivity is played by positivity under reflection of Euclidean time. We discuss the quantization of flows which correspond to classical space-time symmetries, and give a general set of conditions which imply that broad classes of operators in the classical picture give rise to well-defined operators on the quantum-field Hilbert space. In particular, Killing fields on spatial sections give rise to unitary groups on the quantum-field Hilbert space, and corresponding densely-defined self-adjoint generators. We construct the Schrödinger representation using a method which involves localizing certain integrals over the full manifold to integrals over a codimension-one submanifold. This method is called sharp-time localization, and implies reflection positivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharony O., Gubser S.S., Maldacena J., Ooguri H. and Oz Y. (2000). Large N field theories, string theory and gravity. Phys. Rep. 323(3–4): 183–386

    Article  MathSciNet  Google Scholar 

  2. Ashtekar A., Lewandowski J., Marolf D., Mourão J. and Thiemann T. (1997). SU(N) quantum Yang-Mills theory in two dimensions: a complete solution. J. Math. Phys. 38(11): 5453–5482

    Article  MathSciNet  ADS  Google Scholar 

  3. Avis S.J., Isham C.J. and Storey D. (1978). Quantum field theory in anti-de Sitter space-time. Phys. Rev. D (3) 18(10): 3565–3576

    MathSciNet  ADS  Google Scholar 

  4. Beardon, A.F. The Geometry of Discrete Groups. Volume 91 of Graduate Texts in Mathematics New York: Springer-Verlag, (1995) (Corrected reprint of the 1983 original)

  5. Bertola M., Bros J., Gorini V., Moschella U. and Schaeffer R. (2000). Decomposing quantum fields on branes. Nucl. Phys. B 581(1–2): 575–603

    Article  MathSciNet  ADS  Google Scholar 

  6. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved space. Volume 7 of Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press (1982)

  7. Bros J., Epstein H. and Moschella U. (2002). Towards a general theory of quantized fields on the anti-de Sitter space-time. Commun. Math. Phys. 231(3): 481–528

    Article  MathSciNet  ADS  Google Scholar 

  8. Brunetti R., Fredenhagen K. and Verch R. (2003). The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237(1–2): 31–68

    MathSciNet  ADS  Google Scholar 

  9. Burgess C.P. and Lütken C.A. (1985). Propagators and effective potentials in anti-de Sitter space. Phys. Lett. B 153(3): 137–141

    Article  MathSciNet  ADS  Google Scholar 

  10. Carlip S. and Teitelboim C. (1995). Aspects of black hole quantum mechanics and thermodynamics in 2 + 1 dimensions. Phys. Rev. D (3) 51(2): 622–631

    MathSciNet  ADS  Google Scholar 

  11. Chruściel P.T. (2005). On analyticity of static vacuum metrics at non-degenerate horizons. Acta Phys. Polon. B 36(1): 17–26

    MathSciNet  ADS  Google Scholar 

  12. De Angelis G.F., Di Genova G. and Falco D. (1986). Random fields on Riemannian manifolds: a constructive approach. Commun. Math. Phys. 103(2): 297–303

    Article  ADS  Google Scholar 

  13. Dimock J. (1980). Algebras of local observables on a manifold. Commun. Math. Phys. 77(3): 219–228

    Article  MathSciNet  ADS  Google Scholar 

  14. Dimock J. (1984).  P(φ)2 models with variable coefficients. Ann. Phys. 154(2): 283–307

    Article  MathSciNet  ADS  Google Scholar 

  15. Dimock J. (2004). Markov quantum fields on a manifold. Rev. Math. Phys. 16(2): 243–255

    Article  MathSciNet  Google Scholar 

  16. Feynman R.P. (1948). Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20: 367–387

    Article  MathSciNet  ADS  Google Scholar 

  17. Gawçdzki, K.: Lectures on conformal field theory. In: Quantum Fields and Strings: a Course for Mathematicians Vol. 1, 2 (Princeton, NJ, 1996/1997) Providence, RI: Amer. Math. Soc., (1999) pp. 727–805

  18. Gel’fand, I.M., Vilenkin, N.Ya.: Generalized Functions. Volume 4, Applications of harmonic analysis Translated from the Russian by A. Feinstein, New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1964 [1977]

  19. Geroch R. (1969). Limits of spacetimes. Commun. Math. Phys. 13: 180–193

    Article  MathSciNet  ADS  Google Scholar 

  20. Glimm J. and Jaffe A. (1972). The \(\lambda\phi_{2}^{4}\)quantum field theory without cutoffs. IV. Perturbations of the Hamiltonian. J. Math. Phys. 13: 1568–1584

    Article  MathSciNet  Google Scholar 

  21. Glimm J. and Jaffe A. (1979). A note on reflection positivity. Lett. Math. Phys. 3(5): 377–378

    Article  MathSciNet  Google Scholar 

  22. Glimm, J., Jaffe, A. Quantum Field Theory and Statistical Mechanics. Boston, MA: Birkhäuser Boston Inc., 1985

  23. Glimm, J., Jaffe, A.: Quantum Physics: a Functional Integral Point of View. New York: Springer-Verlag, Second edition, 1987

  24. Gubser S.S., Klebanov I.R. and Polyakov A.M. (1998). Gauge theory correlators from non-critical string theory. Phys. Lett. B 428(1–2): 105–114

    Article  MathSciNet  ADS  Google Scholar 

  25. Hawking S.W. (1975). Particle creation by black holes. Commun. Math. Phys. 43(3): 199–220

    Article  MathSciNet  Google Scholar 

  26. Ishibashi A. and Wald R.M. (2003). Dynamics in non-globally-hyperbolic static spacetimes. II. General analysis of prescriptions for dynamics. Class. Quantum Grav. 20(16): 3815–3826

    Article  MathSciNet  ADS  Google Scholar 

  27. Jaffe, A.: Introduction to Quantum Field Theory, 2005. Lecture notes from Harvard Physics 289r, available online at http://www.arthurjaffe.com/Assets/pdf/IntroQFT.pdf

  28. Jaffe A., Klimek S. and Lesniewski A. (1989). Representations of the Heisenberg algebra on a Riemann surface. Commun. Math. Phys. 126(2): 421–431

    Article  MathSciNet  ADS  Google Scholar 

  29. Jaffe A., Lesniewski A. and Weitsman J. (1988). The two-dimensional, N = 2 Wess-Zumino model on a cylinder. Commun. Math. Phys. 114(1): 147–165

    Article  MathSciNet  ADS  Google Scholar 

  30. Kac M. (1949). On distributions of certain Wiener functionals. Trans. Amer. Math. Soc. 65: 1–13

    Article  MathSciNet  Google Scholar 

  31. Kac, M.: On Some Connections Between Probability Theory and Differential and Integral Equations. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability 1950. Berkeley and Los Angeles: University of California Press, 1951, pp. 189–215

  32. Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Berlin: Springer-Verlag, 1995, reprint of the 1980 edition

  33. Kay B.S. (1978). Linear spin-zero quantum fields in external gravitational and scalar fields. I. A one particle structure for the stationary case. Commun. Math. Phys. 62(1): 55–70

    Article  MathSciNet  ADS  Google Scholar 

  34. Klein, A., Landau, L.J.: From the Euclidean group to the Poincaré group via Osterwalder-Schrader positivity. Commun. Math. Phys. 87(4), 469–484 (1982/83)

    Google Scholar 

  35. Lyth D.H. and Riotto A. (1999). Particle physics models of inflation and the cosmological density perturbation. Phys. Rep. 314(1–2): 146

    MathSciNet  Google Scholar 

  36. Maldacena J. (1998). The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2(2): 231–252

    MathSciNet  Google Scholar 

  37. Nelson E. (1973). Construction of quantum fields from Markoff fields. J. Funct. Anal. 12: 97–112

    Article  Google Scholar 

  38. Osterwalder K. and Schrader R. (1973). Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31: 83–112

    Article  MathSciNet  ADS  Google Scholar 

  39. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. II. Commun. Math. Phys. 42, 281–305, (1975) (with an appendix by Stephen Summers)

  40. Simon, B.: The \(P(\phi)_{2}\) Euclidean (quantum) Field Theory. Princeton, NJ: Princeton University Press, 1974

  41. Unruh W.G. (1976). Notes on black hole evaporation. Phys. Rev. D14: 870

    ADS  Google Scholar 

  42. Wald R.M. (1979). On the Euclidean approach to quantum field theory in curved spacetime. Commun. Math. Phys. 70(3): 221–242

    Article  MathSciNet  ADS  Google Scholar 

  43. Wald R.M. (1980). Dynamics in nonglobally hyperbolic, static space-times. J. Math. Phys. 21(12): 2802–2805

    Article  MathSciNet  ADS  Google Scholar 

  44. Wald R.M. (1984). General Relativity. University of Chicago Press, Chicago, IL

    MATH  Google Scholar 

  45. Witten E. (1998). Anti de Sitter space and holography. Adv. Theor. Math. Phys. 2(2): 253–291

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Ritter.

Additional information

Communicated by J.Z. Imbrie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaffe, A., Ritter, G. Quantum Field Theory on Curved Backgrounds. I. The Euclidean Functional Integral. Commun. Math. Phys. 270, 545–572 (2007). https://doi.org/10.1007/s00220-006-0166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0166-2

Keywords

Navigation