Skip to main content

Advertisement

Log in

Dynamics near Unstable, Interfacial Fluids

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study three examples of unstable interfacial fluid motions: vortex sheets with surface tension, Hele-Shaw flows with surface tension, and vortex patches. In all three cases, the nonlinear dynamics of a large class of smooth perturbations is proven to be characterized by the corresponding fastest linear growing mode(s) up to the time scale of \(log \frac{1}{\delta }\), where \(\delta \) is the magnitude of the initial perturbation. In all three cases, the analysis is based on an unified analytical framework that includes precise bounds on the growth of the linearized operator, given by an explicit solution formula, as well as a special sharp nonlinear energy growth estimate. Our main contribution is establishing this nonlinear energy growth estimate for each interface problem in certain high energy norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida L., Bethuel F. and Guo Y. (1997). A remark on the instability of symmetric vortices with large coupling constant. Comm. Pure Appl. Math. 50: 1295–1300

    Article  MathSciNet  Google Scholar 

  2. Ambrose D. (2003). Well-Posedness of Vortex Sheets with Surface Tension. SIAM J. Math. Anal. 35: 221–244

    Article  MathSciNet  Google Scholar 

  3. Ambrose D. (2004). Well-posedness of two-phase Hele-Shaw flow without surface tension. Euro. J. Appl. Math. 15: 597–607

    Article  MathSciNet  Google Scholar 

  4. Bardos C., Guo Y. and Strauss W. (2002). Stable and unstable ideal plane flows. Dedicated to the memory of Jacques-Louis Lions. Chinese Ann. Math. Ser. B 23: 149–164

    Article  MathSciNet  Google Scholar 

  5. Baker G., Meiron D. and Orszag S. (1982). Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123: 477–501

    Article  ADS  MathSciNet  Google Scholar 

  6. Beale J.T., Hou T. and Lowengrub J. (1993). Growth rates for the linearized motion of fluid interfaces away from equilibrium. Comm. Pure Appl. Math. 46: 1269–1301

    MathSciNet  Google Scholar 

  7. Bertozzi A. and Constantin P. (1993). Global regularity for vortex patches. Commun. Math. Phys. 152: 19–28

    Article  ADS  MathSciNet  Google Scholar 

  8. Chemin J.-Y. (1993). Persistance de structures geometriques dans les fluides incompressibles bidimensionals. Ann. Ec. Norm. Super. 26: 1–16

    MathSciNet  Google Scholar 

  9. Constantin P. and Titi E. (1988). On the evolution of nearly circular vortex patches. Commun. Math. Phys. 119: 177–198

    Article  ADS  MathSciNet  Google Scholar 

  10. Cordier S., Grenier E. and Guo Y. (2000). Two-stream instabilities in plasmas. Cathleen Morawetz: a great mathematician. Methods Appl. Anal. 7: 391–405

    MathSciNet  Google Scholar 

  11. Escher J. and Simonett G. (1997). Classical solutions for Hele-Shaw models with surface tension. Adv. Differ. Eqs. 2: 619–642

    MathSciNet  Google Scholar 

  12. Friedlander S., Strauss W. and Vishik M. (1997). Nonlinear instability in an ideal fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire 14: 187–209

    Article  MathSciNet  Google Scholar 

  13. Grenier E. (2000). On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl. Math. 53: 1067–1091

    Article  MathSciNet  Google Scholar 

  14. Guo Y., Hallstrom C. and Spirn D. (2004). Dynamics near an unstable Kirchhoff ellipse. Commun. Math. Phys. 245: 297–354

    Article  ADS  MathSciNet  Google Scholar 

  15. Guo Y. and Strauss W. (1995). Instability of periodic BGK equilibria. Comm. Pure Appl. Math. 48: 861–894

    MathSciNet  Google Scholar 

  16. Hou T., Lowengrub J. and Shelley M. (1994). Removing the stiffness from interfacial flows with surface tension. J. Comp. Phys. 114: 312–338

    Article  ADS  MathSciNet  Google Scholar 

  17. Hou T., Lowengrub J. and Shelley M. (1997). The long-time motion of vortex sheets with surface tension. Phys. Fluids 9: 1933–1954

    Article  ADS  MathSciNet  Google Scholar 

  18. Hwang H.J. and Guo Y. (2003). On the dynamical Rayleigh-Taylor instability. Arch. Rat. Mech. Anal. 167: 235–253

    Article  MathSciNet  Google Scholar 

  19. Iguchi T. (2001). Well-posedness of the initial value problem for capillary-gravity waves. Funkcial. Ekvac. 44: 219–241

    MathSciNet  Google Scholar 

  20. Lin Z. (2004). Nonlinear instability of ideal plane flows. Inter. Math. Res. Not. 41: 2147–2178

    Article  Google Scholar 

  21. Love A.E. (1893). On the stability of certain vortex motion. Proc. Soc. Lond. 23: 18–42

    Google Scholar 

  22. Majda, A., Bertozzi, A.: Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics 27. Cambridge: Cambridge University Press (2002)

  23. Ogawa M. and Tani A. (2002). Free boundary problem for an incompressible ideal fluid with surface tension. Math. Models Methods Appl. Sci. 12: 1725–1740

    Article  MathSciNet  Google Scholar 

  24. Saffman, P.: Vortex dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. New York: Cambridge University Press (1992)

  25. Siegal M., Caflisch R. and Howison S. (2004). Global existence, singular solutions, and ill-posedness for the Muskat problem. Comm. Pure Appl. Math. 57: 1374–1411

    Article  MathSciNet  Google Scholar 

  26. Tang Y. (1987). Nonlinear stability of vortex patches. Trans. AMS 304: 617–638

    Article  Google Scholar 

  27. Taylor, M.:Tools for PDE. In: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. Providence, RI: Amer. Math. Soc., (1991)

  28. Vishik M. and Friedlander S. (2003). Nonlinear instability in two dimensional ideal fluids: the case of a dominant eigenvalue. Commun. Math. Phys. 243: 261–273

    Article  ADS  MathSciNet  Google Scholar 

  29. Wan Y.H. (1986). The stability of rotating vortex patches. Commun. Math. Phys. 107: 1–20

    Article  ADS  Google Scholar 

  30. Wan Y.H. and Pulvirenti M. (1985). Nonlinear stability of circular vortex patches. Commun. Math. Phys. 99: 435–450

    Article  ADS  MathSciNet  Google Scholar 

  31. Wu S. (2006). Mathematical analysis of vortex sheets. Comm. Pure Appl. Math. 59: 1065–1206

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Hallstrom.

Additional information

Communicated by P. Constantin

Y. G. was supported in part by NSF grants DMS-0305161, INT-9815432 and a Salomon award of Brown University.

D. S. was supported in part by NSF grant DMS-0510121.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Hallstrom, C. & Spirn, D. Dynamics near Unstable, Interfacial Fluids. Commun. Math. Phys. 270, 635–689 (2007). https://doi.org/10.1007/s00220-006-0164-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0164-4

Keywords

Navigation