Skip to main content
Log in

Structure of the Space of Ground States in Systems with Non-Amenable Symmetries

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate classical spin systems in d ≥  1 dimensions whose transfer operator commutes with the action of a nonamenable unitary representation of a symmetry group, here SO(1,N); these systems may alternatively be interpreted as systems of interacting quantum mechanical particles moving on hyperbolic spaces. In sharp contrast to the analogous situation with a compact symmetry group the following results are found and proven: (i) Spontaneous symmetry breaking already takes place for finite spatial volume/finitely many particles and even in dimensions d = 1,2. The tuning of a coupling/temperature parameter cannot prevent the symmetry breaking. (ii) The systems have infinitely many non-invariant and non-normalizable generalized ground states. (iii) The linear space spanned by these ground states carries a distinguished unitary representation of SO(1, N), the limit of the spherical principal series. (iv) The properties (i)–(iii) hold universally, irrespective of the details of the interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M. and Schmid W. (1977). A geometric construction of the discrete series for semisimple Lie groups. Invent. Math. 42: 1–62

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Baldoni-Silva M.W. and Barbasch D. (1983). The unitary spectrum of real rank one groups. Invent. Math. 72: 27

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Barut, A., Ra̧czka, R.: Theory of group representations and applications. Singapore: World Scientific, 1986

  4. Bekka B. (1990). Amenable unitary representations of locally compact groups. Invent. Math. 100: 383

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bekka, B., de la Harpe, P., Valette, A.: Kazhdan groups. Forthcoming book, see http://www.mmas.univ-metz.fr/ bekka

  6. Bohm, A., Gadella, M.: Dirac Kets, Gamow Vectors and Gel’fand Triplets. The Rigged Hilbert Space Formulation of Quantum Mechanics. Berlin, etc.: Springer-Verlag, 1989

  7. Comtet A. (1987). On the Landau levels on the hyperbolic plane. Ann. Phys. 173: 185

    Article  MathSciNet  ADS  Google Scholar 

  8. Davies A., MacFarlane A. and van Holten J. (1983). The quantum-mechanical supersymmetric O(3) and O(2,1) sigma-models. Nucl. Phys. B 216: 493

    Article  ADS  Google Scholar 

  9. Dixmier, J.: C *-Algebras. Amsterdam, etc.: North Holland, 1977

  10. Dixmier J. (1960). Sur les représentations de certains groupes orthogonaux. Compt. Rend. 250: 3263

    MathSciNet  MATH  Google Scholar 

  11. Dobrev, V., Mack, G., Petkova, V., Petrova, S., Todorov, I.: Harmonic analysis on the n-dimensional Lorentz group and its applications to conformal quantum field theory. Lecture Notes in Physics, Vol. 63, Berlin, etc.: Springer, 1977

  12. Duncan A., Niedermaier M. and Seiler E. (2006). Vacuum orbit and spontaneous symmetry breaking in hyperbolic sigma-models. Nucl. Phys. B720, 235–288 (2005). (Erratum) Nucl. Phys. B758: 330–331

    MathSciNet  Google Scholar 

  13. Efetov, K.B.: Supersymmetry and theory of disordered metals. Adv. Phys. 32, 53 (1983)

    Google Scholar 

  14. Efetov, K.B.: Supersymmetry in Disorder and Chaos. Cambridge: Cambridge University Press, 1997

  15. Folland, G.: A course in abstract harmonic analysis. Boca Raton, etc.: CRC Press 1995

  16. Fulling S. (1974). Absence of trivial subrepresentations from tensor products of unitary representations of pseudo-orthogonal groups. J. Math. Phys. 15: 1567

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Gel’fand, I.M., Vilenkin, N.Y.: Generalized Functions. Volume IV, New York: Academic Press, 1964

  18. Glimm J. (1961). Type I C *-Algebras. Ann. Math. 73: 572

    Article  MathSciNet  Google Scholar 

  19. Glimm, J., Jaffe, A.: Quantum Physics. Berlin, etc.: Springer-Verlag, 1987

  20. Gradshteyn, I., Ryzhik, I.: Table of integrals and products. New York-London: Academic Press, 1980

  21. Gross, K., Kunze, R.: Fourier decompositions of certain representations. In: Symmetric Spaces, W. Boothby, G. Weiss (eds), New York: Marcel Decker, 1972, pp. 119–139

  22. Hecht H. and Schmid W. (1975). A proof of Blattner’s conjecture. Inv. Math. 31: 129

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press, 1962

  24. Helgason, S.: Geometric analysis on symmetric spaces. Providence, RI: Amer. Math. Soc., 1991

  25. Herb R. and Wolf J. (1986). The Plancherel theorem for general real semi-simple Lie groups. Compos. Math. 57: 271

    MathSciNet  MATH  Google Scholar 

  26. Hirai T. (1962). On irreducible representations of the Lorentz group of n-th order. Proc. Japan Acad. 38: 258

    MathSciNet  MATH  Google Scholar 

  27. Hirai T. (1965). The Plancherel formula for the Lorentz group of n-th order. Proc. Japan Acad. 42: 323

    Article  MathSciNet  Google Scholar 

  28. Kadison R.V. (1957). Irreducible Operator Algebras. Proc. Nat. Acad. Sci. U.S.A. 43: 273

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Lang, S.: SL(2, \(\mathbb{R})\). Reading, MA, etc.: Addison-Wesley, 1975

  30. Lax, P.: Functional Analysis. New York, etc.: Wiley-Interscience, 2002

  31. Lott J. (1986). Renormalization group flow for general sigma-models. Commun. Math. Phys. 107: 165

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Mack G. (1976). On Blattner’s formula for the discrete series of SO0(2n,1). J. Funct. Anal. 23: 311

    Article  MathSciNet  MATH  Google Scholar 

  33. Mackey, G.: Induced Representations. New York, etc.: W.A. Benjamin, 1968

  34. Maurin, K.: General Eigenfunction Expansions and Unitary Representations of Topological Groups. Warsaw: Polish Scientific Publishers, 1968

  35. Michor, P.: Isometric actions of Lie groups and invariants. Lecture notes, Univ. Vienna, 1997, available at www.mat.univie.ac.at/ michor/tgbook.pdf

  36. Mukunda, N., Radhakrishnan, B.: Clebsch-Gordon problem and coefficients of the 3-dimensional Lorentz group in a continuous basis, I-IV. J. Math. Phys. 15, 1320, 1332, 1643, 1656 (1974)

    Google Scholar 

  37. Narnhofer H. and Thirring W. (1999). Spontaneously broken symmetries. Ann. Inst. Henri Poincaré 70: 1

    MathSciNet  MATH  Google Scholar 

  38. Niedermaier M. and Seiler E. (2005). Nonamenability and spontaneous symmetry breaking – the hyperbolic spin chain. Ann. Henri Poincaré 6: 1025–1090

    Article  MathSciNet  MATH  Google Scholar 

  39. Niedermaier, M., Seiler, E.: Generalized ground states as a limit of the iterated transfer operator. Unpublished notes, 2005

  40. Ottoson U. (1968). A classification of the unitary irreducible representations of SO0(1,N). Commun. Math. Phys. 8: 228

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Parthasarathy R. (1972). Dirac operator and discrete series. Ann. Math. 96: 1–30

    Article  MathSciNet  Google Scholar 

  42. Paterson, A.: Amenability. Providence, RI: Amer. Math. Soc., 1988

  43. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Volume 1, revised edition, New York-London: Academic Press, 1980

  44. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Volume 4, New York-London: Academic Press, 1978

  45. Ruelle, D.: Statistical mechanics. New York: W.A. Benjamin, 1968

  46. Schmid W. (1997). Discrete Series. Proc. Symposia in Pure Mathematics 61: 83–113

    Google Scholar 

  47. Schwarz F. (1971). Unitary irreducible representations of SO0(1,N). J. Math. Phys. 12: 131

    Article  MATH  ADS  Google Scholar 

  48. Sewell, G.L.: Quantum Mechanics and its Emergent Macrophysics. Princeton, N.J.: Princeton University Press, 2002

  49. Spencer T. and Zirnbauer M. (2004). Spontaneous symmetry breaking of a hyperbolic sigma-model in three dimensions. Commun. Math. Phys. 252: 167

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Strichartz R. (1973). Harmonic analysis on hyperboloids. J. Funct. Anal. 12: 341

    Article  MathSciNet  MATH  Google Scholar 

  51. Strocchi, F.: Symmetry Breaking. Berlin, etc.: Springer, 2005

  52. Sugiura, M.: Unitary representations and harmonic analysis. Tokyo: Kodansha Scientific Books, 1975

  53. Taylor, M.: Noncommutative harmonic analysis. Providence, RI: Amer. Math. Soc., 1986

  54. van den Ban, E., Flensted-Jensen, M., Schichtkrull, H.: Basic harmonic analysis on pseudo-riemannian symmetric spaces. In: Noncompact Lie groups and some of their applications, Tanner, E. Wilson, R. (eds), Dordrecht: Kluwer, 1994, pp. 61–101

  55. Varadarajan, V.S.: An Introduction to Harmonic Analysis on Semisimple Lie Groups. Cambridge: Cambridge University Press, 1989

  56. Vilenkin, N., Klimyk, A.: Representations of Lie groups and special functions. Volume 2, Dordrecht: Kluwer, 1993

  57. Wallach, N.: Harmonic analysis on homogeneous spaces. New York: Marcel Dekker, 1973

  58. Warner, G.: Harmonic Analysis on semisimple Lie groups. Berlin, etc.: Springer-Verlag (1972)

  59. Weinberg, S.: The Quantum Theory of Fields. Volume I, Cambridge: Cambridge University Press, (1995)

  60. Zimmer, R.: Ergodic theory and semi-simple groups. Boston, etc.: Birkhäuser, 1984

  61. Zirnbauer M. (1988). Migdal-Kadanoff fixed point in the graded nonlinear sigma-model for disordered single particle systems without time reversal symmetry. Phys. Rev. Lett. 60: 1450

    Article  MathSciNet  ADS  Google Scholar 

  62. Zirnbauer M. (1991). Fourier analysis on a hyperbolic supermanifold with constant curvature. Commun. Math. Phys. 141: 503

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. Zirnbauer M. (1996). Riemannian symmetric spaces and their origin in random matrix theory. J. Math. Phys. 37: 4986

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Niedermaier.

Additional information

Communicated by J.Z. Imbrie

Membre du CNRS

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niedermaier, M., Seiler, E. Structure of the Space of Ground States in Systems with Non-Amenable Symmetries. Commun. Math. Phys. 270, 373–443 (2007). https://doi.org/10.1007/s00220-006-0154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0154-6

Keywords

Navigation