Skip to main content
Log in

Superselection Sectors and General Covariance. I

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to the analysis of charged superselection sectors in the framework of the locally covariant quantum field theories. We shall analyze sharply localizable charges, and use net-cohomology of J.E. Roberts as a main tool. We show that to any 4-dimensional globally hyperbolic spacetime a unique, up to equivalence, symmetric tensor \({\mathrm{C}^*}\) -category with conjugates (in case of finite statistics) is attached; to any embedding between different spacetimes, the corresponding categories can be embedded, contravariantly, in such a way that all the charged quantum numbers of sectors are preserved. This entails that to any spacetime is associated a unique gauge group, up to isomorphisms, and that to any embedding between two spacetimes there corresponds a group morphism between the related gauge groups. This form of covariance between sectors also brings to light the issue whether local and global sectors are the same. We conjecture this holds that at least on simply connected spacetimes. It is argued that the possible failure might be related to the presence of topological charges. Our analysis seems to describe theories which have a well defined short-distance asymptotic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashtekar A., Sen A. (1980) On the role of space-time topology in quantum phenomena: superselection of charge and emergence of nontrivial vacua. J. Math. Phys. 21, 526–533

    Article  ADS  MathSciNet  Google Scholar 

  2. Baumgärtel H., Lledó F. (2004) Duality of compact groups and Hilbert \({\mathrm{C}^*}\) -systems for \({\mathrm{C}^*}\) -algebras with nontrivial center. Internat. J. Math. 15, 759–812

    Article  MathSciNet  Google Scholar 

  3. Beem J.K., Ehrlich P.E., Easley K.L. (1996) Global Lorentzian geometry 2nd edition. New York, Marcel Dekker, Inc.,

    MATH  Google Scholar 

  4. Bernal A.N., Sánchez M. (2003) On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470

    Article  ADS  Google Scholar 

  5. Bernal A.N., Sánchez M. (2005) Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50

    Article  ADS  Google Scholar 

  6. Bernal, A.N., Sánchez, M.: A note on the extendability of compact hypersurfaces to smooth Cauchy hypersurfaces. http://arxiv.org/list/gr-qc/0507018, 2005

  7. Borchers H.J. (1965) Local rings and the connection of spin with statistics. Commun. Math. Phys. 1, 281–307

    Article  ADS  MathSciNet  Google Scholar 

  8. Brunetti, R.: Locally covariant quantum field theories. “Rigorous Quantum Field Theory. A Festschrift for Jacques Bros.” Progress in Mathematics, vol. 251, Birkhauser (2006)

  9. Brunetti R., Fredenhagen K. (2000) Microlocal analysis and quantum field theory: Renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661

    Article  ADS  MathSciNet  Google Scholar 

  10. Brunetti, R., Fredenhagen, K.: Algebraic Quantum Field Theory. In: Francoise, J.-P., Naber, G., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics. Elsevier (2006)

  11. Brunetti, R., Fredenhagen, K.: Towards a background independent formulation of perturbative quantum gravity. To appear in the Proceedings of the Workshop on “Mathematical and Physical Aspects of Quantum Gravity”, held in Blaubeuren 28/7-01/08, 2005. http://arxiv.org/list/gr-qc/0603079 (2006)

  12. Brunetti R., Fredenhagen K., Köhler M. (1996) The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633–652

    Article  ADS  Google Scholar 

  13. Brunetti R., Fredenhagen K., Verch R. (2003) The generally covariant locality principle – A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68

    ADS  MathSciNet  Google Scholar 

  14. Brunetti, R., Ruzzi, G.: Superselection sectors and general covariance II. In preparation

  15. Buchholz D., Doplicher S., Longo R., Roberts J.E. (1992) A new look at Goldstone’s theorem. Rev. Math. Phys. Special Issue, 49–83

    MathSciNet  Google Scholar 

  16. Buchholz D. (1982) The physical state space of quantum electrodynamics. Commun. Math. Phys. 85, 49–71

    Article  ADS  MathSciNet  Google Scholar 

  17. Buchholz D., Fredenhagen K. (1982) Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54

    Article  ADS  MathSciNet  Google Scholar 

  18. Ciolli, F.: Massless scalar free Field in 1+1 dimensions II: Net Cohomology and Completeness of Superselection Sectors. In preparation

  19. Conti R., Doplicher S., Roberts J.E. (2001) Superselection theory for subsystems. Commun. Math. Phys. 218(2): 263–281

    Article  ADS  MathSciNet  Google Scholar 

  20. D’Antoni C., Morsella G., Verch R. (2005) Scaling algebras for charged fields and short-distance analysis for localizable and topological charges. Ann. Henri Poincaré 5, 809–870

    Article  MathSciNet  Google Scholar 

  21. Doplicher S., Haag R., Roberts J.E. (1971) Local observables and particle statistics I. Commun. Math. Phys. 23, 199–230

    Article  ADS  MathSciNet  Google Scholar 

  22. Doplicher S., Haag R., Roberts J.E. (1974) Local observables and particle statistics II. Commun. Math Phys. 35, 49–85

    Article  ADS  MathSciNet  Google Scholar 

  23. Doplicher S., Longo R. (1984) Standard and split inclusions of von Neumann algebras. Invent. Math. 35, 493–536

    Article  ADS  MathSciNet  Google Scholar 

  24. Doplicher S., Roberts J.E. (1989) A new duality theory for compact groups. Invent. Math. 98(1): 157–218

    Article  ADS  MathSciNet  Google Scholar 

  25. Doplicher S., Roberts J.E. (1990) Why there is a field algebra with a compact gauge group describing the superselection sectors in particle physics. Commun. Math. Phys. 131(1): 51–107

    Article  ADS  MathSciNet  Google Scholar 

  26. Dütsch M., Fredenhagen K. (2004) Causal perturbation theory in terms of retarded products and, and a proof of the action Ward identity. Rev. Math. Phys. 16(10):1291–1348

    Article  MathSciNet  Google Scholar 

  27. Ellis G.F.R., Hawking S.W. (1973) The large scale structure of space-time. Cambridge, Cambridge University Press

    MATH  Google Scholar 

  28. Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras. II: Geometric aspects and conformal invariance. Rev. Math Phys. Special Issue, 113–157 (1992)

  29. Friedman J.L., Schleich K., Witt D.M. (1993) Topological censorship. Phys. Rev. Lett. 71, 1486–1489

    Article  ADS  MathSciNet  Google Scholar 

  30. Fuller R.W., Wheeler J.A. (1962) Causality and multiply connected space-time. Phys. Rev. 128(2): 919–929

    Article  ADS  MathSciNet  Google Scholar 

  31. Guido D., Longo R., Roberts J.E., Verch R. (2001) Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Rev. Math. Phys. 13(2): 125–198

    Article  MathSciNet  Google Scholar 

  32. Haag R. (1996) Local Quantum Physics. 2nd edition Springer Texts and Monographs in Physics. Berlin- Heidelberg-New York, Springer

    Google Scholar 

  33. Haag R., Kastler D. (1964) An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861

    Article  MathSciNet  Google Scholar 

  34. Hollands S., Wald R.M. (2001) Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289–326

    Article  ADS  MathSciNet  Google Scholar 

  35. Kastler, D., Mebkhout, M., Rehren, K-H.: Introduction to the algebraic theory of superselection sectors. Space-time dimension = 2 – Strictly localizable morphisms. In: The algebraic theory of superselection sectors, D. Kastler (ed.) (Palermo 1989), River Edge, NJ: World Sci. Publishing, 1990, pp. 113–214

  36. Kawahigashi Y., Longo R. (2004) Classification of local conformal nets. Case c < 1. Ann. of Math. 160(2): 493–522

  37. Longo R., Roberts J.E. (1997) A theory of dimension. K-Theory 11(2): 103–159

    Article  MathSciNet  Google Scholar 

  38. Mac Lane S. (1971) Categories for the working mathematician. New York Heidelberg-Berlin, Springer Verlag

    MATH  Google Scholar 

  39. Müger M. (1998) The superselection structure of massive quantum field theories in 1 + 1 dimensions. Rev. Math. Phys. 10, 1147–1170

    Article  MathSciNet  Google Scholar 

  40. Müger M. (2003) Frobenius algebras in and Morita equivalence of tensor categories I. J. Pure Appl. Alg. 180, 81–157

    Article  Google Scholar 

  41. O’Neill B. (1983) Semi–Riemannian geometry. New York, Academic Press

    MATH  Google Scholar 

  42. Porrmann M. (2004) Particle weights and their disintegration I. Commun. Math. Phys. 248, 269–304

    ADS  MathSciNet  Google Scholar 

  43. Porrmann M. (2004) Particle weights and their disintegration II. Commun. Math. Phys. 248, 305–333

    ADS  MathSciNet  Google Scholar 

  44. Roberts J.E. (1976) Local cohomology and superselection structure. Commun. Math. Phys 51(2): 107–119

    Article  ADS  Google Scholar 

  45. Roberts, J.E.: Lectures on algebraic quantum field theory. In: The algebraic theory of superselection sectors, D. Kastler (ed.) (Palermo 1989), River Edge, NJ: World Sci. Publishing, 1990, pp 1–112

  46. Roberts, J.E.: More lectures in algebraic quantum field theory. In: Noncommutative geometry edited by S. Doplicher, R. Longo, C.I.M.E. Lectures, Martina Franca, Italy, 2000. Berlin-Heidelberg-New York: Springer, 2003

  47. Roberts, J.E., Ruzzi, G.: A cohomological description of connections and curvature over posets. http:// arxiv.org/list/math.AT/0604173, 2006

  48. Ruzzi G. (2003) Essential properties of the vacuum sector for a theory of superselection sectors. Rev. Math. Phys. 15(10):1255–1283

    Article  MathSciNet  Google Scholar 

  49. Ruzzi G. (2005) Punctured Haag duality in locally covariant quantum field theories. Commun. Math. Phys. 256, 621–634

    Article  ADS  MathSciNet  Google Scholar 

  50. Ruzzi G. (2005) Homotopy of posets, net-cohomology, and theory of superselection sectors in globally hyperbolic spacetimes. Rev. Math. Phys. 17(9): 1021–1070

    Article  MathSciNet  Google Scholar 

  51. Sorkin R. (1979) The quantum electromagnetic field in multiply connected space. J. Phys. A 12, 403–421

    Article  ADS  MathSciNet  Google Scholar 

  52. Vasselli E. (2003) Continuous Fields of \({\mathrm{C}^*}\) -algebras arising from extensions of tensor \({\mathrm{C}^*}\) -categories. J. Funct. Anal. 199, 123–153

    Article  MathSciNet  Google Scholar 

  53. Verch R. (1997) Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields in curved spacetime. Rev. Math. Phys. 9(5): 635–674

    Article  MathSciNet  Google Scholar 

  54. Verch, R.: Notes on regular diamonds., Preprint, available as ps-file at http://www/lqp.uni-goettingen.de/lqp/papers/

  55. Verch R. (2001) A spin-statistics theorem for quantum fields on curved spacetimes manifolds in a generally covariant framework. Commun. Math. Phys. 223: 261

    Article  ADS  MathSciNet  Google Scholar 

  56. Verch, R.: Stability Properties of Quantum Fields on Curved Spacetimes. Habilitation Thesis, University of Göttingen, March 2003

  57. Wald R.M. (1984) General Relativity. Chicago, University of Chicago Press

    MATH  Google Scholar 

  58. Wick G.C., Wightman A.S., Wigner E.P. (1952) The intrinsic parity of elementary particles. Phys. Rev. 88, 101–105

    Article  ADS  MathSciNet  Google Scholar 

  59. Witt D.M. (1986) Vacuum space-times that admit no maximal slice. Phys. Rev. Lett. 57, 1386–1389

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Ruzzi.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunetti, R., Ruzzi, G. Superselection Sectors and General Covariance. I. Commun. Math. Phys. 270, 69–108 (2007). https://doi.org/10.1007/s00220-006-0147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0147-5

Keywords

Navigation