Skip to main content
Log in

Tunneling in Two Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Tunneling is studied here as a variational problem formulated in terms of a functional which approximates the rate function for large deviations in Ising systems with Glauber dynamics and Kac potentials, [9]. The spatial domain is a two-dimensional square of side L with reflecting boundary conditions. For L large enough the penalty for tunneling from the minus to the plus equilibrium states is determined. Minimizing sequences are fully characterized and shown to have approximately a planar symmetry at all times, thus departing from the Wulff shape in the initial and final stages of the tunneling. In a final section (Sect. 11), we extend the results to d = 3 but their validity in d > 3 is still open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti G., Bellettini G., Cassandro M., Presutti E. (1996) Surface tension in Ising systems with Kac potentials. J. Stat. Phys. 82, 743–796

    Article  MATH  MathSciNet  Google Scholar 

  2. Bellettini G., De Masi A., Dirr N., Presutti E.: Optimal orbits, invariant manifolds and finite volume instantons Preprint http://cvgmt.sns.it/people/belletti/, 2005

  3. Bellettini G., De Masi A., Presutti E. (2005) Tunnelling for nonlocal evolution equations J. Nonlin. Math. Phys. 12(Suppl.)1: 50–63

    MathSciNet  Google Scholar 

  4. Bellettini G., De Masi A., Presutti E. (2005) Energy levels of a non local evolution equation. J. Math. Phys. 46, 1–31

    Article  MathSciNet  Google Scholar 

  5. Bodineau T., Ioffe D. (2004) Stability of interfaces and stochastic dynamics in the regime of partial wetting. Ann. Henri Poincaré 5, 871–914

    Article  MATH  MathSciNet  Google Scholar 

  6. Buttà P., De Masi A., Rosatelli E. (2003) Slow motion and metastability for a nonlocal evolution equation. J. Stat. Phys. 112, 709–764

    Article  MATH  Google Scholar 

  7. Chen X. (1997) Existence, uniqueness and asymptotic stability of traveling waves in non local evolution equations. Adv. Diff. Eqs. 2, 125–160

    Google Scholar 

  8. Chmaj A., Ren X. (1999) Homoclinic solutions of an integral equation: existence and stability. J. Diff. Eq. 155, 17–43

    Article  MATH  MathSciNet  Google Scholar 

  9. Comets F. (1987) Nucleation for a long range magnetic model. Ann. Inst. H. Poincaré Probab. Statist. 23(2): 135–178

    MATH  MathSciNet  Google Scholar 

  10. Cassandro M., Olivieri E., Picco P. (1986) Small random perturbations of infinite dimensional dynamical systems and the nucleation theory. Ann. Inst. Henri Poincaré 44, 343–396

    MATH  MathSciNet  Google Scholar 

  11. De Masi A., Dirr N., Presutti E. (2006) Interface Instability under Forced Displacements. Annales Henri Poincaré 7(3): 471–511

    Article  MATH  MathSciNet  Google Scholar 

  12. De Masi A., Gobron T., Presutti E. (1995) Traveling fronts in non-local evolution equations. Arch. Rat. Mech. Anal. 132, 143–205

    Article  MATH  MathSciNet  Google Scholar 

  13. De Masi A., Olivieri E., Presutti E. (1998) Spectral properties of integral operators in problems of interface dynamics and metastability. Markov Process. Related Fields 4, 27–112

    MATH  MathSciNet  Google Scholar 

  14. De Masi A., Olivieri E., Presutti E. (2000) Critical droplet for a non local mean field equation. Markov Process. Related Fields 6, 439–471

    MATH  MathSciNet  Google Scholar 

  15. De Masi A., Orlandi E., Presutti E., Triolo L. (1994) Glauber evolution with Kac potentials I Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7, 1–67

    Article  MathSciNet  Google Scholar 

  16. De Masi A., Orlandi E., Presutti E., Triolo L. (1994) Stability of the interface in a model of phase separation. Proc. Roy. Soc. Edinburgh Sect. A 124, 1013–1022

    MATH  MathSciNet  Google Scholar 

  17. De Masi A., Orlandi E., Presutti E., Triolo L. (1994) Uniqueness and global stability of the instanton in non local evolution equations. Rend. Math. Appl. (7)14: 693–723

    MathSciNet  Google Scholar 

  18. Faris W.G., Jona Lasinio G. (1982) Large fluctuations for nonlinear heat equation with noise. J. Phys. A.: Math. Gen. 15, 3025–3055

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Freidlin M.I., Wentzell A.D. Random Perturbations of Dynamical Systems. Grund. der. Math. Wiss. 260, Berlin-New York: Springer-Verlag, 1984

  20. Fife P.C.: Mathematical aspects of reacting and diffusing systems. Lectures Notes in Biomathematics 28, Berlin-New York: Springer-Verlag, 1979

  21. Fusco G., Hale J.K. (1989) Slow motion manifolds, dormant instability and singular perturbations. J. Dyn. Diff. Eqs. 1, 75–94

    Article  MATH  MathSciNet  Google Scholar 

  22. Jona-Lasinio G., Mitter P.K. (1990) Large deviation estimates in the stochastic quantization of \(\phi^{4}_{2}\). Commun. Math. Phys. 130, 111–121

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Kohn R.V., Reznikoff M.G., Tonegawa Y. (2006) The sharp interface limit of the action functional for Allen Cahn in one space dimension. Calc. Var. Partial Diff. Eqs. 25(4): 503–534

    Article  MATH  MathSciNet  Google Scholar 

  24. Kohn R.V., Otto F., Reznikoff M.G., Vanden-Eijnden E. Action minimization and sharp interface limits for the stochastic Allen-Cahn Equation. Preprint (2005)

  25. Massari U., Miranda M., (1984) Minimal Surfaces of Codimension One Notas de Matemática. Amsterdam, North-Holland

    Google Scholar 

  26. Martinelli F. (1994) On the two-dimensional dynamical Ising model in the phase coexistence region. J. Stat. Phys. 76(5–6): 1179–1246

    Article  MATH  MathSciNet  Google Scholar 

  27. Olivieri E., Vares M.E., (2005) Large Deviations and Metastability. Cambridge, Cambridge University Press

    MATH  Google Scholar 

  28. Presutti E., (1999) From Statistical Mechanics towards Continuum Mechanics. Course given at Max-Plank Institute, Leipzig

    Google Scholar 

  29. Ros A. The isoperimetric problem. In: Global theory of minimal surfaces. Clay Math. Proc., 2, Providence, RI: Amer. Math. Soc., 2005, pp. 175–209

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Presutti.

Additional information

Communicated by J.L. Lebowitz

This research has been partially supported by MURST and NATO Grant PST.CLG.976552 and COFIN, Prin n.2004028108.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellettini, G., Masi, A.D., Dirr, N. et al. Tunneling in Two Dimensions. Commun. Math. Phys. 269, 715–763 (2007). https://doi.org/10.1007/s00220-006-0143-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0143-9

Keywords

Navigation