Skip to main content
Log in

On the Global Evolution of Vortex Filaments, Blobs, and Small Loops in 3D Ideal Flows

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a wide class of approximate models of evolution of singular distributions of vorticity in three dimensional incompressible fluids and we show that they have global smooth solutions. The proof exploits the existence of suitable Hamiltonian functions. The approximate models we analyze (essentially discrete and continuous vortex filaments and vortex loops) are related to some problem of classical physics concerning turbulence and also to the numerical approximation of flows with very high Reynolds number. Finally, we apply our strategy to discrete models for filaments used in numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A. (1975) Sobolev spaces. Pure and Applied Mathematics, Vol. 65. New York-London, Academic Press

    Google Scholar 

  2. Beale J.T., Kato T., Majda A. (1984) Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94(1):61–66

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bell J., Markus D. (1992) Vorticity intensification and the transition to turbulence in the three-dimensional Euler equation. Commun. Math. Phys. 147(2):371–394

    Article  MATH  ADS  Google Scholar 

  4. Berselli L.C., Bessaih H. (2002) Some results for the line vortex equation. Nonlinearity 15(6):1729–1746

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bessaih, H., Flandoli, F.: A mean field result with application to 3D vortex filaments. In: Probabilistic methods in fluids, River Edge, NJ: World Sci. Publishing, 2003, pp. 22–34

  6. Bessaih H., Gubinelli M., Russo F.(2005) The evolution of a random vortex filament. Ann. Prob. 33(5):1825–1855

    Article  MATH  MathSciNet  Google Scholar 

  7. Buttke, T.F.: Velicity methods: Lagrangian numerical methods which preserve the Hamiltonian structure of incompressible fluid flow. In: Vortex flows and related numerical methods (Grenoble, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 395, Kluwer Acad. Publ., Dordrecht. 1993, pp. 39–57

  8. Buttke T.F. (1988) Numerical study of superfluid turbulence in the self-induction approximation. J. Comput. Phys. 76, 301

    Article  MATH  ADS  Google Scholar 

  9. Chorin A.J. (1994) Vorticity and turbulence. New York, Springer-Verlag

    MATH  Google Scholar 

  10. Constantin P. (1994) Geometric statistics in turbulence. SIAM Rev. 36(1):73–98

    Article  MATH  MathSciNet  Google Scholar 

  11. Constantin, P.: Near identity transformations for the Navier-Stokes equations. In: Handbook of mathematical fluid dynamics, Vol. II, Amsterdam: North-Holland, 2003, pp. 117–141

  12. Constantin P., Majda A.J., Tabak E. (1994) Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7(6):1495–1533

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Córdoba A., Córdoba D. (2004) A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3):511–528

    Article  MATH  ADS  Google Scholar 

  14. Córdoba A., Córdoba D., Fefferman C.L., Fontelos M.A. (2004) A geometrical constraint for capillary jet breakup. Adv. Math. 187(1):228–239

    Article  MATH  MathSciNet  Google Scholar 

  15. Cottet G.-H., Koumoutsakos P.D. (2002) Vortex methods, theory and practice. Cambridge, Cambridge, Univ. Press

    MATH  Google Scholar 

  16. Flandoli F. (2002) A probabilistic description of small scale structures in 3D fluids. Ann. Inst. H. Poincaré Probab. Statist. 38(2):207–228

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Flandoli F., Gubinelli M. (2002) Gibbs ensembles of vortex filaments. Probab. Theory Related Fields 22(3):317–340

    Article  MathSciNet  Google Scholar 

  18. Frisch U. (1995) Turbulence. The legacy of A.N. Kolmogorov. Cambridge, Cambridge Univ Press

    MATH  Google Scholar 

  19. Gallavotti, G.: Foundations of fluid dynamics. Translated from the Italian. Texts and Monographs in Physics. Berlin: Springer-Verlag, 2002

  20. Hasimoto H. (1972) A soliton on a vortex filament. J. Fluid. Mech. 51, 477–485

    Article  MATH  ADS  Google Scholar 

  21. Helmholtz H. (1885) Uber integrale der hydrodynamischen gleichungen welche den Wirbelbewegungen entsprechen. Crelle J. 55, 25

    Google Scholar 

  22. Holm D.D. (2003) Rasetti-Regge Dirac bracket formulation of Lagrangian fluid dynamics of vortex filaments. Nonlinear waves: computation and theory, II (Athens, GA, 2001). Math. Comput. Simulation 62(1-2):53–63

    Article  MATH  MathSciNet  Google Scholar 

  23. Lord Kelvin (Sir William Thomson),: On vortex motion. Trans. Royal Soc. Edin. 25, 217–260 (1869)

    Google Scholar 

  24. Klein R., Majda A.J. (1991) Self-stretching of a perturbed vortex filament. I. The asymptotic equation for deviations from a straight line. Phys. D 49(3):323–352

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Klein R., Majda A.J. (1991) Self-stretching of a perturbed vortex filament. II. Structure of solutions. Phys. D 53(2–4):267–294

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Lions P.L. (1997) On Euler equations and statistical physics. Scuola Normale Superiore, Pisa

    MATH  Google Scholar 

  27. Lions P.L., Majda A.J. (2000) Equilibrium statistical theory for nearly parallel vortex filaments. Comm. Pure Appl. Math. 53(1):76–142

    Article  MATH  MathSciNet  Google Scholar 

  28. Lyons T.J. (1998) Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14(2):215–310

    MATH  MathSciNet  Google Scholar 

  29. Lyons T.J., Qian Z. (2002) System control and rough paths. Oxford Mathematical Monographs. Oxford, Oxford Univ. Press

    Google Scholar 

  30. Marsden, J.E., Weinstein, A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Order in chaos (Los Alamos, N.M., 1982). Phys. D 7(1-3), 305–323 (1983)

  31. Moore D.W. (1972) Finite amplitude waves on aircraft trailing vortices. Aero. Quarterly 23, 307–314

    Google Scholar 

  32. Roberts P. (1972) A Hamiltonian theory for weakly interacting vortices. Mathematika 19, 169–179

    Article  MATH  Google Scholar 

  33. Rosenhead L. (1930) The spread of vorticity in the wake behind a cylinder. Proc. Royal Soc. 127, 590–612

    MATH  ADS  Google Scholar 

  34. Saffman P.G. (1992) Vortex dynamics. Cambridge, Cambridge Univ. Press

    MATH  Google Scholar 

  35. Osedelets V.I. (1988) On a new way of writing the Navier-Stokes equation: the Hamiltonian formalism. Russ. Math. Surv. 44, 210–211

    Article  Google Scholar 

  36. Vincent A., Meneguzzi M. (1991) The spatial structure and the statistical properties of homogeneous turbulence. J. Fluid. Mech. 225(1):1–25

    Article  MATH  ADS  Google Scholar 

  37. Wolibner W. (1933) Un théoreme sur l’existence du mouvement plan d’un fluide parfait homogène incompressible, pendant un temps infiniment longue. Math. Z. 37, 698–726

    Article  MATH  MathSciNet  Google Scholar 

  38. Young L.C. (1936) An inequality of Hölder type, connected with Stieltjes integration. Acta Math. 67, 251–282

    Article  MATH  MathSciNet  Google Scholar 

  39. Yudovich, V.I.: Non-stationary flow of an ideal incompressible liquid. Comput. Math. & Math. Phys. 3, 1407–1456 (1963) (Russian)

    Google Scholar 

  40. Zhou H. (1997) On the motion of a slender vortex filament. Phys. Fluids 9, 970–981

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi C. Berselli.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berselli, L.C., Gubinelli, M. On the Global Evolution of Vortex Filaments, Blobs, and Small Loops in 3D Ideal Flows. Commun. Math. Phys. 269, 693–713 (2007). https://doi.org/10.1007/s00220-006-0142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0142-x

Keywords

Navigation