Abstract
We study the free path length and the geometric free path length in the model of the periodic two-dimensional Lorentz gas (Sinai billiard). We give a complete and rigorous proof for the existence of their distributions in the small-scatterer limit and explicitly compute them. As a corollary one gets a complete proof for the existence of the constant term \(c=2-3\ln 2+\frac{27\zeta(3)}{2\pi^2}\) in the asymptotic formula \(h(T)=-2 \ln \epsilon +c+o(1)\) of the KS entropy of the billiard map in this model, as conjectured by P. Dahlqvist.
This is a preview of subscription content, access via your institution.
References
- 1.
Augustin V., Boca F.P., Cobeli C., Zaharescu A. (2001) The h-spacing distribution between Farey points. Math. Proc. Cambridge Phil. Soc. 131, 23–38
- 2.
Blank S., Krikorian N. (1993) Thom’s problem on irrational flows. Internat. J. Math. 4, 721–726
- 3.
Bleher P. (1992) Statistical properties of two-dimensional periodic Lorentz with infinite horizon. J. Stat. Phys. 66, 315–373
- 4.
Boca F.P., Cobeli C., Zaharescu A. (2000) Distribution of lattice points visible from the origin. Commun. Math. Phys. 213, 433–470
- 5.
Boca F.P., Cobeli C., Zaharescu A. (2001) A conjecture of R.R. Hall on Farey points. J. Reine Angew. Math. 535, 207–236
- 6.
Boca F.P., Gologan R.N., Zaharescu A. (2003) The average length of a trajectory in a certain billiard in a flat two-torus. New York J. Math. 9, 303–330
- 7.
Boca F.P., Gologan R.N., Zaharescu A. (2003) The statistics of the trajectory of a billiard in a flat two-torus. Commun. Math. Phys. 240, 53–73
- 8.
Bouchaud J.-P., Le Doussal P. (1985) Numerical study of a D-dimensional periodic Lorentz gas with universal properties. J. Stat. Phys. 41, 225–248
- 9.
Bourgain J., Golse F., Wennberg B. (1998) On the distribution of free path lengths for the periodic Lorentz gas. Commun. Math. Phys. 190, 491–508
- 10.
Bunimovich L.: Billiards and other hyperbolic systems. In: Dynamical systems, ergodic theory and applications, edited by Ya.G. Sinai, Encyclopaedia Math. Sci. Vol. 100, Berlin: Springer-Verlag, 2000, pp. 192–233
- 11.
Caglioti E., Golse F. (2003) On the distribution of free path lengths for the periodic Lorentz gas III. Commun. Math. Phys. 236, 199–221
- 12.
Chernov N. (1991) New proof of Sinai’s formula for the entropy of hyperbolic billiard systems. Application to Lorentz gases and Bunimovich stadium. Funct. Anal. and Appl. 25(3): 204–219
- 13.
Chernov N.: Entropy values and entropy bounds. In: Hard ball systems and the Lorentz gas, edited by D. Szász, Encyclopaedia Math. Sci., Vol. 101, Berlin: Springer-Verlag, 2000, pp. 121–143
- 14.
Dahlqvist P. (1997) The Lyapunov exponent in the Sinai billiard in the small scatterer limit. Nonlinearity 10, 159–173
- 15.
Deshouillers J.-M., Iwaniec H. (1982/1983) Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math. 70, 219–288
- 16.
Dumas H.S., Dumas L., Golse F. (1997) Remarks on the notion of mean free path for a periodic array of spherical obstacles. J. Stat. Phys. 87(3/4): 943–950
- 17.
Erdös P. (1959) Some results on diophantine approximation. Acta Arith. 5, 359–369
- 18.
Erdös P., Szüsz P., Turán P. (1958) Remarks on the theory of diophantine approximation. Colloq. Math. 6, 119–126
- 19.
Estermann T. (1961) On Kloosterman’s sum. Mathematika 8, 83–86
- 20.
Friedman B. Niven I. (1959) The average first recurrence time. Trans. Amer. Math. Soc. 92, 25–34
- 21.
Friedman B., Oono Y., Kubo I. (1984) Universal behaviour of Sinai billiard systems in the small-scatterer limit. Phys. Rev. Lett. 52, 709–712
- 22.
Gallavotti G.: Lectures on the billiard. In: Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), edited by J. Moser, Lecture Notes in Phys. Vol. 38, Berlin-Heidelberg-Newyork: Springer-Verlag, 1975, pp. 236–295
- 23.
Goldfeld D., Sarnak P. (1983) Sums of Kloosterman sums. Invent. Math. 71, 243–250
- 24.
Golse F. On the statistics of free-path lengths for the periodic Lorentz gas. In: XIV International Congress on Mathematical Physics (Lisbon, 2003), edited by J.-C. Zambrini, River Edge, NJ: World Sci. Publ., 2006, pp. 439–446
- 25.
Golse F., Wennberg B. (2000) On the distribution of free path lengths for the periodic Lorentz gas I. M2AN Math. Model. Numer. Anal. 34, 1151–1163
- 26.
Gutzwiller M.: Physics and arithmetic chaos in the Fourier transform. In: The mathematical beauty of physics (Saclay, 1996). edited by J.M. Drouffe J.B. Zuber, Adv. Series in Math. Phys. Vol. 24, River Edge, NJ: World Sci. Publ., 1997, pp. 258–280
- 27.
Hooley C. (1957) An asymptotic formula in the theory of numbers. Proc. London Math. Soc. 7, 396–413
- 28.
Kesten H. (1962) Some probabilistic theorems on diophantine approximations. Trans. Amer. Math. Soc. 103, 189–217
- 29.
Kuznetsov N.V. The Petterson conjecture for forms of weight zero and Linnik’s conjecture. Math. Sb. (N.S.) 111(153): 334–383, 479 (1980)
- 30.
Lewin L., (1958) Dilogarithms and associated functions. London, Macdonald & Co. London
- 31.
Lorentz H.A.: Le mouvement des électrons dans les métaux. Arch. Néerl. 10, 336 (1905). Reprinted in Collected papers. Vol. 3. The Hague: Martinus Nijhoff, 1936
- 32.
Pólya G. (1918) Zahlentheoretisches und wahrscheinlichkeitstheoretisches über die sichtweite im walde. Arch. Math. Phys. 27, 135–142
- 33.
Santaló L.A. (1943) Sobre la distribucion probable de corpusculos en un cuerpo. Deducida de la distribucion en sus secciones y problemas analogos. Rev. Un. Mat. Argentina 9, 145–164
- 34.
Sinai Y.G. (1970) Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russ. Math. Surveys 25, 137–189
- 35.
Weil A. (1948) On some exponential sums. Proc. Nat. Acad. Sci. USA 34, 204–207
Author information
Affiliations
Corresponding author
Additional information
In memory of Walter Philipp
Communicated by P. Sarnak
Rights and permissions
About this article
Cite this article
Boca, F.P., Zaharescu, A. The Distribution of the Free Path Lengths in the Periodic Two-Dimensional Lorentz Gas in the Small-Scatterer Limit. Commun. Math. Phys. 269, 425–471 (2007). https://doi.org/10.1007/s00220-006-0137-7
Received:
Accepted:
Published:
Issue Date:
Keywords
- Asymptotic Formula
- Diophantine Approximation
- Free Path Length
- Vertical Slit
- Liouville Measure